The Resource A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
Resource Information
The item A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- It is shown that a 2-connected homotopy commutative H-space with associative mod 2 homology ring and finitely generated mod 2 cohomology ring has acyclic mod 2 cohomology. This implies that a connected, homotopy commutative, homotopy associative H-space with finitely generated mod 2 cohomology ring is mod 2 homotopy equivalent to a product of Eilenberg-MacLane spaces, giving a complete classification of such spaces localized at the prime 2
- Language
- eng
- Extent
- iii, 116 pages
- Contents
-
- Introduction
- Techniques used in the proof
- Initial study of [italic capitals]QH[superscript]even
- Initial study of [italic capitals]QH[superscript]odd
- Further study of [italic capitals]QH[superscript]*
- [italic capitals]QH[superscript]* in low degrees
- Proof of corollaries
- Appendix
- Isbn
- 9780821825143
- Label
- A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
- Title
- A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
- Language
- eng
- Summary
- It is shown that a 2-connected homotopy commutative H-space with associative mod 2 homology ring and finitely generated mod 2 cohomology ring has acyclic mod 2 cohomology. This implies that a connected, homotopy commutative, homotopy associative H-space with finitely generated mod 2 cohomology ring is mod 2 homotopy equivalent to a product of Eilenberg-MacLane spaces, giving a complete classification of such spaces localized at the prime 2
- Cataloging source
- UkLiU
- http://library.link/vocab/creatorDate
- 1963-
- http://library.link/vocab/creatorName
- Slack, Michael
- Series statement
- Memoirs of the American Mathematical Society
- Series volume
- 449
- http://library.link/vocab/subjectName
-
- H-spaces
- Obstruction theory
- Dyer-Lashof operations
- Label
- A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
- Bibliography note
- Includes bibliographical references (pages 115-116)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Introduction
- Techniques used in the proof
- Initial study of [italic capitals]QH[superscript]even
- Initial study of [italic capitals]QH[superscript]odd
- Further study of [italic capitals]QH[superscript]*
- [italic capitals]QH[superscript]* in low degrees
- Proof of corollaries
- Appendix
- Dimensions
- 26 cm.
- Extent
- iii, 116 pages
- Isbn
- 9780821825143
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Label
- A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
- Bibliography note
- Includes bibliographical references (pages 115-116)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Introduction
- Techniques used in the proof
- Initial study of [italic capitals]QH[superscript]even
- Initial study of [italic capitals]QH[superscript]odd
- Further study of [italic capitals]QH[superscript]*
- [italic capitals]QH[superscript]* in low degrees
- Proof of corollaries
- Appendix
- Dimensions
- 26 cm.
- Extent
- iii, 116 pages
- Isbn
- 9780821825143
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/A-classification-theorem-for-homotopy-commutative/p68MbcBf5oU/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/A-classification-theorem-for-homotopy-commutative/p68MbcBf5oU/">A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/A-classification-theorem-for-homotopy-commutative/p68MbcBf5oU/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/A-classification-theorem-for-homotopy-commutative/p68MbcBf5oU/">A classification theorem for homotopy commutative H-spaces with finitely generated mod 2 cohomology rings</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>