Coverart for item
The Resource An introduction to statistical analysis in research : with applications in the biological and life sciences, Kathleen F. Weaver, Vanessa Morales, Sarah L. Dunn, Kanya Godde, Pablo Weaver, (electronic book)

An introduction to statistical analysis in research : with applications in the biological and life sciences, Kathleen F. Weaver, Vanessa Morales, Sarah L. Dunn, Kanya Godde, Pablo Weaver, (electronic book)

Label
An introduction to statistical analysis in research : with applications in the biological and life sciences
Title
An introduction to statistical analysis in research
Title remainder
with applications in the biological and life sciences
Statement of responsibility
Kathleen F. Weaver, Vanessa Morales, Sarah L. Dunn, Kanya Godde, Pablo Weaver
Creator
Contributor
Author
Subject
Language
eng
Summary
Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSSr, Excelr, and Numbersr output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSSr, Excelr, and Numbersr. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: Aims to develop readers' skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPointr lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous journal articles and a member of the American Statistical Association, she received her PhD in Anthropology from the University of Tennessee. PABLO F. WEAVER, PhD, is Instructor in the Department of Biology at the University of La Verne. The author of numerous journal articles, he received his PhD in Ecology and Evolutionary Biology from the University of Colorado
Member of
Cataloging source
  • StDuBDS
  • StDuBDS
http://library.link/vocab/creatorName
Weaver, Kathleen F
Dewey number
519.5
Index
no index present
LC call number
QA276.4
LC item number
.I65 2017
Literary form
non fiction
http://library.link/vocab/relatedWorkOrContributorName
  • Morales, Vanessa
  • Dunn, Sarah L.
  • Godde, Kanya
  • Weaver, Pablo
http://library.link/vocab/subjectName
  • Mathematical statistics
  • Life sciences
Target audience
specialized
Label
An introduction to statistical analysis in research : with applications in the biological and life sciences, Kathleen F. Weaver, Vanessa Morales, Sarah L. Dunn, Kanya Godde, Pablo Weaver, (electronic book)
Instantiates
Publication
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
<p>Contents</p> <p>Preface ix</p> <p>Acknowledgments xi</p> <p>About the Companion Website xiii</p> <p><b>1 Experimental Design 1</b></p> <p>1.1 Experimental Design Background 1</p> <p>1.2 Sampling Design 2</p> <p>1.3 Sample Analysis 7</p> <p>1.4 Hypotheses 9</p> <p>1.5 Variables 10</p> <p><b>2 Central Tendency and Distribution 13</b></p> <p>2.1 Central Tendency and Other Descriptive Statistics 13</p> <p>2.2 Distribution 18</p> <p>2.3 Descriptive Statistics in Excel 34</p> <p>2.4 Descriptive Statistics in SPSS 48</p> <p>2.5 Descriptive Statistics in Numbers 52</p> <p>2.6 Descriptive Statistics in R 57</p> <p><b>3 Showing Your Data 61</b></p> <p>3.1 Background on Tables and Graphs 61</p> <p>3.2 Tables 62</p> <p>3.3 Bar Graphs, Histograms, and Box Plots 63</p> <p>3.4 Line Graphs and Scatter Plots 136</p> <p>3.5 Pie Charts 165</p> <p><b>4 Parametric versus Nonparametric Tests 191</b></p> <p>4.1 Overview 192</p> <p>4.2 Two-Sample and Three-Sample Tests 194</p> <p><b>5 t-Test 195</b></p> <p>5.1 Student&rsquo;s t-Test Background 195</p> <p>5.2 Examples t-Tests 196</p> <p>5.3 Case Study 201</p> <p>5.4 Excel Tutorial 205</p> <p>5.5 Paired t-Test SPSS Tutorial 209</p> <p>5.6 Independent t-Test SPSS Tutorial 213</p> <p>5.7 Numbers Tutorial 218</p> <p>5.8 R Independent/Paired-Samples t-Test Tutorial 223</p> <p><b>6 ANOVA 227</b></p> <p>6.1 ANOVA Background 227</p> <p>6.2 Case Study 236</p> <p>6.3 One-Way ANOVA Excel Tutorial 241</p> <p>6.4 One-Way ANOVA SPSS Tutorial 247</p> <p>6.5 One-Way RepeatedMeasures ANOVA SPSS Tutorial 252</p> <p>6.6 Two-Way Repeated Measures ANOVA SPSS Tutorial 261</p> <p>6.7 One-Way ANOVA Numbers Tutorial 272</p> <p>6.8 One-Way R Tutorial 288</p> <p>6.9 Two-Way ANOVA R Tutorial 291</p> <p><b>7 Mann</b><b>&ndash;</b><b>Whitney U andWilcoxon Signed-Rank 297</b></p> <p>7.1 Mann&ndash;Whitney U andWilcoxon Signed-Rank Background 297</p> <p>7.2 Assumptions 298</p> <p>7.3 Case Study &ndash; Mann&mdash;Whitney U Test 299</p> <p>7.4 Case Study &ndash;Wilcoxon Signed-Rank 302</p> <p>7.5 Mann&ndash;Whitney U Excel Tutorial 305</p> <p>7.6 Wilcoxon Signed-Rank Excel Tutorial 313</p> <p>7.7 Mann&ndash;Whitney U SPSS Tutorial 319</p> <p>7.8 Wilcoxon Signed-Rank SPSS Tutorial 324</p> <p>7.9 Mann&ndash;Whitney U Numbers Tutorial 328</p> <p>7.10 Wilcoxon Signed-Rank Numbers Tutorial 337</p> <p>7.11 Mann&ndash;Whitney U/Wilcoxon Signed-Rank R Tutorial 350</p> <p><b>8 Kruskal</b><b>&ndash;</b><b>Wallis 353</b></p> <p>8.1 Kruskal&ndash;Wallis Background 353</p> <p>8.2 Case Study 1 354</p> <p>8.3 Case Study 2 358</p> <p>8.4 Kruskal&ndash;Wallis Excel Tutorial 362</p> <p>8.5 Kruskal&ndash;Wallis SPSS Tutorial 368</p> <p>8.6 Kruskal&ndash;Wallis Numbers Tutorial 375</p> <p>8.7 Kruskal&ndash;Wallis R Tutorial 386</p> <p><b>9 Chi-Square Test 393</b></p> <p>9.1 Chi-Square Background 393</p> <p>9.2 Case Study 1 394</p> <p>9.3 Case Study 2 401</p> <p>9.4 Chi-Square Excel Tutorial 405</p> <p>9.5 Chi-Square SPSS Tutorial 418</p> <p>9.6 Chi-Square Numbers Tutorial 426</p> <p>9.7 Chi-Square R Tutorial 429</p> <p><b>10 Pearson</b><b>&rsquo;</b><b>s and Spearman</b><b>&rsquo;</b><b>s Correlation 435</b></p> <p>10.1 Correlation Background 435</p> <p>10.2 Example 435</p> <p>10.3 Case Study &ndash; Pearson&rsquo;s Correlation 442</p> <p>10.4 Case Study &ndash; Spearman&rsquo;s Correlation 445</p> <p>10.5 Pearson&rsquo;s Correlation Excel and Numbers Tutorial 448</p> <p>10.6 Spearman&rsquo;s Correlation Excel Tutorial 455</p> <p>10.7 Pearson/Spearman&rsquo;s Correlation SPSS Tutorial 462</p> <p>10.8 Pearson/Spearman&rsquo;s Correlation R Tutorial 467</p> <p><b>11 Linear Regression 473</b></p> <p>11.1 Linear Regression Background 473</p> <p>11.2 Case Study 480</p> <p>11.3 Linear Regression Excel Tutorial 484</p> <p>11.4 Linear Regression SPSS Tutorial 497</p> <p>11.5 Linear Regression Numbers Tutorial 508</p> <p>11.6 Linear Regression R Tutorial 517</p> <p><b>12 Basics in Excel 523</b></p> <p>12.1 Opening Excel 524</p> <p>12.2 Installing the Data Analysis ToolPak 525</p> <p>12.3 Cells and Referencing 529</p> <p>12.4 Common Commands and Formulas 532</p> <p>12.5 Applying Commands to Entire Columns 534</p> <p>12.6 Inserting a Function 536</p> <p>12.7 Formatting Cells 537</p> <p><b>13 Basics in SPSS 539</b></p> <p>13.1 Opening SPSS 539</p> <p>13.2 Labeling Variables 541</p> <p>13.3 Setting Decimal Placement 543</p> <p>13.4 Determining the Measure of a Variable 544</p> <p>13.5 Saving SPSS Data Files 545</p> <p>13.6 Saving SPSS Output 547</p> <p><b>14 Basics in Numbers 551</b></p> <p>14.1 Opening Numbers 551</p> <p>14.2 Common Commands 553</p> <p>14.3 Applying Commands 555</p> <p>14.4 Adding Functions 557</p> <p><b>15 Basics in R 561</b></p> <p>15.1 Opening R 561</p> <p>15.2 Getting Acquainted with the Console 562</p> <p>15.3 Loading Data 566</p> <p>15.4 Installing and Loading Packages 570</p> <p>15.5 Troubleshooting 576</p> <p>Appendix 579</p> <p>Flow Chart 579</p> <p>Literature Cited 581</p> <p>Glossary 585</p> <p>Index 591</p>
Control code
AH30990491
Extent
312 pages
Form of item
electronic
Governing access note
After 5 minutes Preview, click on &#x32;Request Access&#x33;, fill in a form with your details. If triggered, the book will be loaned and tied to the one user for 1 week, during which time users can read or download as they choose. 4th user request triggers auto-purchase
Isbn
9781119299691
Lccn
2016042830
Media category
computer
Media MARC source
rdamedia
Specific material designation
remote
Label
An introduction to statistical analysis in research : with applications in the biological and life sciences, Kathleen F. Weaver, Vanessa Morales, Sarah L. Dunn, Kanya Godde, Pablo Weaver, (electronic book)
Publication
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
<p>Contents</p> <p>Preface ix</p> <p>Acknowledgments xi</p> <p>About the Companion Website xiii</p> <p><b>1 Experimental Design 1</b></p> <p>1.1 Experimental Design Background 1</p> <p>1.2 Sampling Design 2</p> <p>1.3 Sample Analysis 7</p> <p>1.4 Hypotheses 9</p> <p>1.5 Variables 10</p> <p><b>2 Central Tendency and Distribution 13</b></p> <p>2.1 Central Tendency and Other Descriptive Statistics 13</p> <p>2.2 Distribution 18</p> <p>2.3 Descriptive Statistics in Excel 34</p> <p>2.4 Descriptive Statistics in SPSS 48</p> <p>2.5 Descriptive Statistics in Numbers 52</p> <p>2.6 Descriptive Statistics in R 57</p> <p><b>3 Showing Your Data 61</b></p> <p>3.1 Background on Tables and Graphs 61</p> <p>3.2 Tables 62</p> <p>3.3 Bar Graphs, Histograms, and Box Plots 63</p> <p>3.4 Line Graphs and Scatter Plots 136</p> <p>3.5 Pie Charts 165</p> <p><b>4 Parametric versus Nonparametric Tests 191</b></p> <p>4.1 Overview 192</p> <p>4.2 Two-Sample and Three-Sample Tests 194</p> <p><b>5 t-Test 195</b></p> <p>5.1 Student&rsquo;s t-Test Background 195</p> <p>5.2 Examples t-Tests 196</p> <p>5.3 Case Study 201</p> <p>5.4 Excel Tutorial 205</p> <p>5.5 Paired t-Test SPSS Tutorial 209</p> <p>5.6 Independent t-Test SPSS Tutorial 213</p> <p>5.7 Numbers Tutorial 218</p> <p>5.8 R Independent/Paired-Samples t-Test Tutorial 223</p> <p><b>6 ANOVA 227</b></p> <p>6.1 ANOVA Background 227</p> <p>6.2 Case Study 236</p> <p>6.3 One-Way ANOVA Excel Tutorial 241</p> <p>6.4 One-Way ANOVA SPSS Tutorial 247</p> <p>6.5 One-Way RepeatedMeasures ANOVA SPSS Tutorial 252</p> <p>6.6 Two-Way Repeated Measures ANOVA SPSS Tutorial 261</p> <p>6.7 One-Way ANOVA Numbers Tutorial 272</p> <p>6.8 One-Way R Tutorial 288</p> <p>6.9 Two-Way ANOVA R Tutorial 291</p> <p><b>7 Mann</b><b>&ndash;</b><b>Whitney U andWilcoxon Signed-Rank 297</b></p> <p>7.1 Mann&ndash;Whitney U andWilcoxon Signed-Rank Background 297</p> <p>7.2 Assumptions 298</p> <p>7.3 Case Study &ndash; Mann&mdash;Whitney U Test 299</p> <p>7.4 Case Study &ndash;Wilcoxon Signed-Rank 302</p> <p>7.5 Mann&ndash;Whitney U Excel Tutorial 305</p> <p>7.6 Wilcoxon Signed-Rank Excel Tutorial 313</p> <p>7.7 Mann&ndash;Whitney U SPSS Tutorial 319</p> <p>7.8 Wilcoxon Signed-Rank SPSS Tutorial 324</p> <p>7.9 Mann&ndash;Whitney U Numbers Tutorial 328</p> <p>7.10 Wilcoxon Signed-Rank Numbers Tutorial 337</p> <p>7.11 Mann&ndash;Whitney U/Wilcoxon Signed-Rank R Tutorial 350</p> <p><b>8 Kruskal</b><b>&ndash;</b><b>Wallis 353</b></p> <p>8.1 Kruskal&ndash;Wallis Background 353</p> <p>8.2 Case Study 1 354</p> <p>8.3 Case Study 2 358</p> <p>8.4 Kruskal&ndash;Wallis Excel Tutorial 362</p> <p>8.5 Kruskal&ndash;Wallis SPSS Tutorial 368</p> <p>8.6 Kruskal&ndash;Wallis Numbers Tutorial 375</p> <p>8.7 Kruskal&ndash;Wallis R Tutorial 386</p> <p><b>9 Chi-Square Test 393</b></p> <p>9.1 Chi-Square Background 393</p> <p>9.2 Case Study 1 394</p> <p>9.3 Case Study 2 401</p> <p>9.4 Chi-Square Excel Tutorial 405</p> <p>9.5 Chi-Square SPSS Tutorial 418</p> <p>9.6 Chi-Square Numbers Tutorial 426</p> <p>9.7 Chi-Square R Tutorial 429</p> <p><b>10 Pearson</b><b>&rsquo;</b><b>s and Spearman</b><b>&rsquo;</b><b>s Correlation 435</b></p> <p>10.1 Correlation Background 435</p> <p>10.2 Example 435</p> <p>10.3 Case Study &ndash; Pearson&rsquo;s Correlation 442</p> <p>10.4 Case Study &ndash; Spearman&rsquo;s Correlation 445</p> <p>10.5 Pearson&rsquo;s Correlation Excel and Numbers Tutorial 448</p> <p>10.6 Spearman&rsquo;s Correlation Excel Tutorial 455</p> <p>10.7 Pearson/Spearman&rsquo;s Correlation SPSS Tutorial 462</p> <p>10.8 Pearson/Spearman&rsquo;s Correlation R Tutorial 467</p> <p><b>11 Linear Regression 473</b></p> <p>11.1 Linear Regression Background 473</p> <p>11.2 Case Study 480</p> <p>11.3 Linear Regression Excel Tutorial 484</p> <p>11.4 Linear Regression SPSS Tutorial 497</p> <p>11.5 Linear Regression Numbers Tutorial 508</p> <p>11.6 Linear Regression R Tutorial 517</p> <p><b>12 Basics in Excel 523</b></p> <p>12.1 Opening Excel 524</p> <p>12.2 Installing the Data Analysis ToolPak 525</p> <p>12.3 Cells and Referencing 529</p> <p>12.4 Common Commands and Formulas 532</p> <p>12.5 Applying Commands to Entire Columns 534</p> <p>12.6 Inserting a Function 536</p> <p>12.7 Formatting Cells 537</p> <p><b>13 Basics in SPSS 539</b></p> <p>13.1 Opening SPSS 539</p> <p>13.2 Labeling Variables 541</p> <p>13.3 Setting Decimal Placement 543</p> <p>13.4 Determining the Measure of a Variable 544</p> <p>13.5 Saving SPSS Data Files 545</p> <p>13.6 Saving SPSS Output 547</p> <p><b>14 Basics in Numbers 551</b></p> <p>14.1 Opening Numbers 551</p> <p>14.2 Common Commands 553</p> <p>14.3 Applying Commands 555</p> <p>14.4 Adding Functions 557</p> <p><b>15 Basics in R 561</b></p> <p>15.1 Opening R 561</p> <p>15.2 Getting Acquainted with the Console 562</p> <p>15.3 Loading Data 566</p> <p>15.4 Installing and Loading Packages 570</p> <p>15.5 Troubleshooting 576</p> <p>Appendix 579</p> <p>Flow Chart 579</p> <p>Literature Cited 581</p> <p>Glossary 585</p> <p>Index 591</p>
Control code
AH30990491
Extent
312 pages
Form of item
electronic
Governing access note
After 5 minutes Preview, click on &#x32;Request Access&#x33;, fill in a form with your details. If triggered, the book will be loaned and tied to the one user for 1 week, during which time users can read or download as they choose. 4th user request triggers auto-purchase
Isbn
9781119299691
Lccn
2016042830
Media category
computer
Media MARC source
rdamedia
Specific material designation
remote

Library Locations

Processing Feedback ...