The Resource An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
Resource Information
The item An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- 1 online resource.
- Contents
-
- Intro; Preface; Early history of Alexandov geometry; Manifesto of Alexandrov geometry; Acknowledgements; Contents; 1 Preliminaries; 1.1 Metric spaces; 1.2 Constructions; 1.3 Geodesics, triangles, and hinges; 1.4 Length spaces; 1.5 Model angles and triangles; 1.6 Angles and the first variation; 1.7 Space of directions and tangent space; 1.8 Hausdorff convergence; 1.9 Gromov-Hausdorff convergence; 2 Gluing theorem and billiards; 2.1 The 4-point condition; 2.2 Thin triangles; 2.3 Reshetnyak's gluing theorem; 2.4 Reshetnyak puff pastry; 2.5 Wide corners; 2.6 Billiards; 2.7 Comments
- 3 Globalization and asphericity3.1 Locally CAT spaces; 3.2 Space of local geodesic paths; 3.3 Globalization; 3.4 Polyhedral spaces; 3.5 Flag complexes; 3.6 Cubical complexes; 3.7 Exotic aspherical manifolds; 3.8 Comments; 4 Subsets; 4.1 Motivating examples; 4.2 Two-convexity; 4.3 Sets with smooth boundary; 4.4 Open plane sets; 4.5 Shefel's theorem; 4.6 Polyhedral case; 4.7 Two-convex hulls; 4.8 Proof of Shefel's theorem; 4.9 Comments; Semisolutions; References; ; Index
- Isbn
- 9783030053116
- Label
- An invitation to Alexandrov geometry : CAT(0) spaces
- Title
- An invitation to Alexandrov geometry
- Title remainder
- CAT(0) spaces
- Statement of responsibility
- Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
- Language
- eng
- Cataloging source
- N$T
- http://library.link/vocab/creatorName
- Alexander, Stephanie
- Dewey number
- 516.373
- Index
- index present
- LC call number
- QA641
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
-
- Kapovitch, Vitali
- Petrunin, Anton
- Series statement
- SpringerBriefs in mathematics,
- http://library.link/vocab/subjectName
-
- Generalized spaces
- Riemannian manifolds
- Geometry, Riemannian
- Label
- An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Intro; Preface; Early history of Alexandov geometry; Manifesto of Alexandrov geometry; Acknowledgements; Contents; 1 Preliminaries; 1.1 Metric spaces; 1.2 Constructions; 1.3 Geodesics, triangles, and hinges; 1.4 Length spaces; 1.5 Model angles and triangles; 1.6 Angles and the first variation; 1.7 Space of directions and tangent space; 1.8 Hausdorff convergence; 1.9 Gromov-Hausdorff convergence; 2 Gluing theorem and billiards; 2.1 The 4-point condition; 2.2 Thin triangles; 2.3 Reshetnyak's gluing theorem; 2.4 Reshetnyak puff pastry; 2.5 Wide corners; 2.6 Billiards; 2.7 Comments
- 3 Globalization and asphericity3.1 Locally CAT spaces; 3.2 Space of local geodesic paths; 3.3 Globalization; 3.4 Polyhedral spaces; 3.5 Flag complexes; 3.6 Cubical complexes; 3.7 Exotic aspherical manifolds; 3.8 Comments; 4 Subsets; 4.1 Motivating examples; 4.2 Two-convexity; 4.3 Sets with smooth boundary; 4.4 Open plane sets; 4.5 Shefel's theorem; 4.6 Polyhedral case; 4.7 Two-convex hulls; 4.8 Proof of Shefel's theorem; 4.9 Comments; Semisolutions; References; ; Index
- Dimensions
- unknown
- Extent
- 1 online resource.
- File format
- unknown
- Form of item
- online
- Isbn
- 9783030053116
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
-
- on1100588432
- (OCoLC)1100588432
- Label
- An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Intro; Preface; Early history of Alexandov geometry; Manifesto of Alexandrov geometry; Acknowledgements; Contents; 1 Preliminaries; 1.1 Metric spaces; 1.2 Constructions; 1.3 Geodesics, triangles, and hinges; 1.4 Length spaces; 1.5 Model angles and triangles; 1.6 Angles and the first variation; 1.7 Space of directions and tangent space; 1.8 Hausdorff convergence; 1.9 Gromov-Hausdorff convergence; 2 Gluing theorem and billiards; 2.1 The 4-point condition; 2.2 Thin triangles; 2.3 Reshetnyak's gluing theorem; 2.4 Reshetnyak puff pastry; 2.5 Wide corners; 2.6 Billiards; 2.7 Comments
- 3 Globalization and asphericity3.1 Locally CAT spaces; 3.2 Space of local geodesic paths; 3.3 Globalization; 3.4 Polyhedral spaces; 3.5 Flag complexes; 3.6 Cubical complexes; 3.7 Exotic aspherical manifolds; 3.8 Comments; 4 Subsets; 4.1 Motivating examples; 4.2 Two-convexity; 4.3 Sets with smooth boundary; 4.4 Open plane sets; 4.5 Shefel's theorem; 4.6 Polyhedral case; 4.7 Two-convex hulls; 4.8 Proof of Shefel's theorem; 4.9 Comments; Semisolutions; References; ; Index
- Dimensions
- unknown
- Extent
- 1 online resource.
- File format
- unknown
- Form of item
- online
- Isbn
- 9783030053116
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
-
- on1100588432
- (OCoLC)1100588432
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/An-invitation-to-Alexandrov-geometry--CAT0/N8zWP0VtFxY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/An-invitation-to-Alexandrov-geometry--CAT0/N8zWP0VtFxY/">An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/An-invitation-to-Alexandrov-geometry--CAT0/N8zWP0VtFxY/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/An-invitation-to-Alexandrov-geometry--CAT0/N8zWP0VtFxY/">An invitation to Alexandrov geometry : CAT(0) spaces, Stephanie Alexander, Vitali Kapovitch, Anton Petrunin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>