Coverart for item
The Resource Basic finite element method as applied to injury biomechanics, King-Hay Yang

Basic finite element method as applied to injury biomechanics, King-Hay Yang

Label
Basic finite element method as applied to injury biomechanics
Title
Basic finite element method as applied to injury biomechanics
Statement of responsibility
King-Hay Yang
Creator
Author
Subject
Genre
Language
eng
Cataloging source
NLE
http://library.link/vocab/creatorDate
1954-
http://library.link/vocab/creatorName
Yang, King Hay
Dewey number
612.76
Index
no index present
LC call number
TA347.F5
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/subjectName
  • Human mechanics
  • Human mechanics
  • Finite element method
  • MATHEMATICS
  • Finite element method
  • Human mechanics
  • Human mechanics
Label
Basic finite element method as applied to injury biomechanics, King-Hay Yang
Instantiates
Publication
Note
1. Introduction 2. Meshing, Element Types, and Element Shape Functions 3. Isoparametric Formulation and Mesh Quality 4. Element Stiffness Matrix 5. Material Laws and Properties 6. Boundary and loading conditions 7. Stepping through finite element analysis 8. Modal and Transient Dynamic Solutions 9. Biological Components Modeling 10. Parametric Modeling 11. Modeling passive and active muscle 12. Modeling the Head 13. Modeling the Neck 14. Modeling the Upper Torso and Upper Extremity 15. Modeling the Lower Torso 16. Modeling the Lower Extremity 17. Modeling Vulnerable subjects 18. Fundamentals of Blast Modeling
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover; Basic Finite Element Method as Applied to Injury Biomechanics; Basic Finite Element Method as Applied toInjury Biomechanics; Copyright; Contents; List of Contributors; Foreword; Preface; 1 -- Basic Finite ElementMethod and Analysisas Applied to Injury Biomechanics; 1 -- Introduction; 1.1 FINITE ELEMENT METHOD AND ANALYSIS; 1.2 CALCULATION OF STRAIN AND STRESS FROM THE FE MODEL; 1.2.1 AVERAGE STRAIN AND POINT STRAIN; 1.2.2 NORMAL AND SHEAR STRAIN; 1.2.3 CALCULATION OF STRESS; 1.3 SAMPLE MATRIX STRUCTURAL ANALYSIS; 1.3.1 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING
  • 1.3.2 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING NOT IN LINE WITH THE X-AXIS1.3.3 ELEMENT STIFFNESS MATRIX OF A HOMOGENEOUS LINEAR ELASTIC BAR; 1.3.4 GLOBAL STIFFNESS MATRIX OF MULTIPLE INLINE LINEAR SPRINGS OR BARS; 1.3.5 GLOBAL STIFFNESS MATRIX OF A SIMPLE BIOMECHANICS PROBLEM; 1.3.6 GLOBAL STIFFNESS MATRIX OF A SIMPLE TRUSS BRIDGE; 1.3.7 GAUSSIAN OR GAUSS ELIMINATION; 1.4 FROM MSA TO A FINITE ELEMENT MODEL; REFERENCES; 2 -- Meshing, Element Types, and Element Shape Functions; 2.1 STRUCTURE IDEALIZATION AND DISCRETIZATION; 2.2 NODE; 2.3 ELEMENT; 2.3.1 SIMPLEST ELEMENT TYPES
  • 2.3.2 1D ELEMENT TYPE2.3.3 2D ELEMENT TYPE; 2.3.4 3D ELEMENT TYPE; 2.4 FORMATION OF FINITE ELEMENT MESH; 2.5 ELEMENT SHAPE FUNCTIONS AND [B] MATRIX; 2.5.1 1D, 2-NODE ELEMENT SHAPE FUNCTIONS; 2.5.1.1 2-Node Linear Bar Element; 2.5.1.2 2-Node Beam Element; 2.5.2 2D, 3-NODE LINEAR TRIANGULAR ELEMENT; 2.5.2.1 3-Node Linear Triangular Element; 2.5.3 4-NODE RECTANGULAR BILINEAR PLANE ELEMENT WITH EDGES PARALLEL TO THE COORDINATE AXES; 2.5.3.1 Comparison of CST and Bilinear Quadrilateral Element; 2.5.4 2D, 4-NODE PLATE ELEMENT SHAPE FUNCTIONS WITH EDGES PARALLEL TO THE COORDINATE AXES
  • 2.5.4.1 Use Pascal's Triangle to Select Polynomial Terms2.5.4.2 Select Polynomial Functions to Interpolate a Four-Node Plate Element; 2.5.4.3 Identify 12 Constants for the Interpolation Polynomial; 2.5.4.4 Find Shape Functions for a 4-Node Plate Element; 2.5.4.5 Determine Strain-Displacement Matrix; 2.5.5 3D, 4-NODE SHELL ELEMENT; 2.5.6 3D, 8-NODE TRILINEAR ELEMENT SHAPE FUNCTIONS; REFERENCES; 3 -- Isoparametric Formulation and Mesh Quality; 3.1 INTRODUCTION; 3.2 NATURAL COORDINATE SYSTEM; 3.3 ISOPARAMETRIC FORMULATION OF 1D ELEMENTS; 3.3.1 1D LINEAR BAR ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS
  • 3.3.1.1 1D Transfer Mapping Functions and Interpolations3.3.2 1D BEAM ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS; 3.4 ISOPARAMETRIC FORMULATION OF 2D ELEMENT; 3.4.1 ISOPARAMETRIC FORMULATION OF 2D TRIANGULAR ELEMENT; 3.4.2 ISOPARAMETRIC FORMULATION OF 2D BILINEAR ELEMENT; 3.4.3 DETERMINE THE [B] MATRIX BASED ON ISOPARAMETRIC FORMULATION; 3.5 ISOPARAMETRIC FORMULATION OF 3D ELEMENT; 3.5.1 CONSTANT-STRAIN TETRAHEDRAL ELEMENT; 3.5.2 TRILINEAR HEXAHEDRAL ELEMENT; 3.6 TRANSFER MAPPING FUNCTION FOR 2D ELEMENT; 3.7 JACOBIAN MATRIX AND DETERMINANT OF JACOBIAN MATRIX
Extent
1 online resource
Form of item
online
Isbn
9780128098325
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Note
Online access with subscription: Elsevier (Sciencedirect Freedom Collection)
http://library.link/vocab/ext/overdrive/overdriveId
9780128098325
Specific material designation
remote
System control number
  • on1006507659
  • (OCoLC)1006507659
Label
Basic finite element method as applied to injury biomechanics, King-Hay Yang
Publication
Note
1. Introduction 2. Meshing, Element Types, and Element Shape Functions 3. Isoparametric Formulation and Mesh Quality 4. Element Stiffness Matrix 5. Material Laws and Properties 6. Boundary and loading conditions 7. Stepping through finite element analysis 8. Modal and Transient Dynamic Solutions 9. Biological Components Modeling 10. Parametric Modeling 11. Modeling passive and active muscle 12. Modeling the Head 13. Modeling the Neck 14. Modeling the Upper Torso and Upper Extremity 15. Modeling the Lower Torso 16. Modeling the Lower Extremity 17. Modeling Vulnerable subjects 18. Fundamentals of Blast Modeling
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover; Basic Finite Element Method as Applied to Injury Biomechanics; Basic Finite Element Method as Applied toInjury Biomechanics; Copyright; Contents; List of Contributors; Foreword; Preface; 1 -- Basic Finite ElementMethod and Analysisas Applied to Injury Biomechanics; 1 -- Introduction; 1.1 FINITE ELEMENT METHOD AND ANALYSIS; 1.2 CALCULATION OF STRAIN AND STRESS FROM THE FE MODEL; 1.2.1 AVERAGE STRAIN AND POINT STRAIN; 1.2.2 NORMAL AND SHEAR STRAIN; 1.2.3 CALCULATION OF STRESS; 1.3 SAMPLE MATRIX STRUCTURAL ANALYSIS; 1.3.1 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING
  • 1.3.2 ELEMENT STIFFNESS MATRIX OF A LINEAR SPRING NOT IN LINE WITH THE X-AXIS1.3.3 ELEMENT STIFFNESS MATRIX OF A HOMOGENEOUS LINEAR ELASTIC BAR; 1.3.4 GLOBAL STIFFNESS MATRIX OF MULTIPLE INLINE LINEAR SPRINGS OR BARS; 1.3.5 GLOBAL STIFFNESS MATRIX OF A SIMPLE BIOMECHANICS PROBLEM; 1.3.6 GLOBAL STIFFNESS MATRIX OF A SIMPLE TRUSS BRIDGE; 1.3.7 GAUSSIAN OR GAUSS ELIMINATION; 1.4 FROM MSA TO A FINITE ELEMENT MODEL; REFERENCES; 2 -- Meshing, Element Types, and Element Shape Functions; 2.1 STRUCTURE IDEALIZATION AND DISCRETIZATION; 2.2 NODE; 2.3 ELEMENT; 2.3.1 SIMPLEST ELEMENT TYPES
  • 2.3.2 1D ELEMENT TYPE2.3.3 2D ELEMENT TYPE; 2.3.4 3D ELEMENT TYPE; 2.4 FORMATION OF FINITE ELEMENT MESH; 2.5 ELEMENT SHAPE FUNCTIONS AND [B] MATRIX; 2.5.1 1D, 2-NODE ELEMENT SHAPE FUNCTIONS; 2.5.1.1 2-Node Linear Bar Element; 2.5.1.2 2-Node Beam Element; 2.5.2 2D, 3-NODE LINEAR TRIANGULAR ELEMENT; 2.5.2.1 3-Node Linear Triangular Element; 2.5.3 4-NODE RECTANGULAR BILINEAR PLANE ELEMENT WITH EDGES PARALLEL TO THE COORDINATE AXES; 2.5.3.1 Comparison of CST and Bilinear Quadrilateral Element; 2.5.4 2D, 4-NODE PLATE ELEMENT SHAPE FUNCTIONS WITH EDGES PARALLEL TO THE COORDINATE AXES
  • 2.5.4.1 Use Pascal's Triangle to Select Polynomial Terms2.5.4.2 Select Polynomial Functions to Interpolate a Four-Node Plate Element; 2.5.4.3 Identify 12 Constants for the Interpolation Polynomial; 2.5.4.4 Find Shape Functions for a 4-Node Plate Element; 2.5.4.5 Determine Strain-Displacement Matrix; 2.5.5 3D, 4-NODE SHELL ELEMENT; 2.5.6 3D, 8-NODE TRILINEAR ELEMENT SHAPE FUNCTIONS; REFERENCES; 3 -- Isoparametric Formulation and Mesh Quality; 3.1 INTRODUCTION; 3.2 NATURAL COORDINATE SYSTEM; 3.3 ISOPARAMETRIC FORMULATION OF 1D ELEMENTS; 3.3.1 1D LINEAR BAR ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS
  • 3.3.1.1 1D Transfer Mapping Functions and Interpolations3.3.2 1D BEAM ELEMENT ISOPARAMETRIC SHAPE FUNCTIONS; 3.4 ISOPARAMETRIC FORMULATION OF 2D ELEMENT; 3.4.1 ISOPARAMETRIC FORMULATION OF 2D TRIANGULAR ELEMENT; 3.4.2 ISOPARAMETRIC FORMULATION OF 2D BILINEAR ELEMENT; 3.4.3 DETERMINE THE [B] MATRIX BASED ON ISOPARAMETRIC FORMULATION; 3.5 ISOPARAMETRIC FORMULATION OF 3D ELEMENT; 3.5.1 CONSTANT-STRAIN TETRAHEDRAL ELEMENT; 3.5.2 TRILINEAR HEXAHEDRAL ELEMENT; 3.6 TRANSFER MAPPING FUNCTION FOR 2D ELEMENT; 3.7 JACOBIAN MATRIX AND DETERMINANT OF JACOBIAN MATRIX
Extent
1 online resource
Form of item
online
Isbn
9780128098325
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Note
Online access with subscription: Elsevier (Sciencedirect Freedom Collection)
http://library.link/vocab/ext/overdrive/overdriveId
9780128098325
Specific material designation
remote
System control number
  • on1006507659
  • (OCoLC)1006507659

Library Locations

Processing Feedback ...