Coverart for item
The Resource Bio-inspired algorithms for engineering, Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco

Bio-inspired algorithms for engineering, Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco

Label
Bio-inspired algorithms for engineering
Title
Bio-inspired algorithms for engineering
Statement of responsibility
Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco
Creator
Contributor
Author
Subject
Language
eng
Summary
"Bio-inspired Algorithms for Engineering builds a bridge between the proposed bio-inspired algorithms developed in the past few decades and their applications in real-life problems, not only in an academic context, but also in the real world. The book proposes novel algorithms to solve real-life, complex problems, combining well-known bio-inspired algorithms with new concepts, including both rigorous analyses and unique applications. It covers both theoretical and practical methodologies, allowing readers to learn more about the implementation of bio-inspired algorithms. This book is a useful resource for both academic and industrial engineers working on artificial intelligence, robotics, machine learning, vision, classification, pattern recognition, identification and control.Presents real-time implementation and simulation results for all the proposed schemes. Offers a comparative analysis and rigorous analysis of the convergence of proposed algorithms.Provides a guide for implementing each application at the end of each chapterIncludes illustrations, tables and figures that facilitate the reader’s comprehension of the proposed schemes and applications"--
Member of
Assigning source
Provided by publisher
Cataloging source
N$T
http://library.link/vocab/creatorName
Alanis, Alma Y
Dewey number
005.1
Index
index present
LC call number
QA76.9.A43
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Arana-Daniel, Nancy
  • Lopez-Franco, Carlos
http://library.link/vocab/subjectName
  • Computer algorithms
  • Natural computation
  • Evolutionary computation
  • Natural computation
  • Evolutionary computation
Label
Bio-inspired algorithms for engineering, Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco
Instantiates
Publication
Copyright
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Intro; Title page; Table of Contents; Copyright; Dedication; Preface; Acknowledgments; Chapter One: Bio-inspired Algorithms; Abstract; 1.1. Introduction; 1.2. Particle Swarm Optimization; 1.3. Artificial Bee Colony Algorithm; 1.4. Micro Artificial Bee Colony Algorithm; 1.5. Differential Evolution; 1.6. Bacterial Foraging Optimization Algorithm; References; Chapter Two: Data Classification Using Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron; Abstract; 2.1. Introduction; 2.2. Support Vector Machines; 2.3. Evolutionary algorithms
  • 2.4. The Kernel Adatron algorithm2.5. Kernel Adatron trained with evolutionary algorithms; 2.6. Results using benchmark repository datasets; 2.7. Application to classify electromyographic signals; 2.8. Conclusions; References; Chapter Three: Reconstruction of 3D Surfaces Using RBF Adjusted with PSO; Abstract; 3.1. Introduction; 3.2. Radial basis functions; 3.3. Interpolation of surfaces with RBF and PSO; 3.4. Conclusion; References; Chapter Four: Soft Computing Applications in Robot Vision; Abstract; 4.1. Introduction; 4.2. Image tracking; 4.3. Plane detection; 4.4. Conclusion; References
  • Chapter Five: Soft Computing Applications in Mobile RoboticsAbstract; 5.1. Introduction to mobile robotics; 5.2. Nonholonomic mobile robot navigation; 5.3. Holonomic mobile robot navigation; 5.4. Conclusion; References; Chapter Six: Particle Swarm Optimization to Improve Neural Identifiers for Discrete-time Unknown Nonlinear Systems; Abstract; 6.1. Introduction; 6.2. Particle-swarm-based approach of a real-time discrete neural identifier for Linear Induction Motors; 6.3. Neural model with particle swarm optimization Kalman learning for forecasting in smart grids; 6.4. Conclusions; References
  • Chapter Seven: Bio-inspired Algorithms to Improve Neural Controllers for Discrete-time Unknown Nonlinear SystemAbstract; 7.1. Neural Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.2. Neural-PSO Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.3. Neural-BFO Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.4. Comparative analysis; 7.5. Conclusions; References; Chapter Eight: Final Remarks; Index
Control code
SCIDI1021172444
Dimensions
unknown
Edition
First edition.
Extent
1 online resource.
File format
unknown
Form of item
online
Isbn
9780128137895
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • on1021172444
  • (OCoLC)1021172444
Label
Bio-inspired algorithms for engineering, Alma Y. Alanis, Nancy Arana-Daniel, Carlos López-Franco
Publication
Copyright
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Intro; Title page; Table of Contents; Copyright; Dedication; Preface; Acknowledgments; Chapter One: Bio-inspired Algorithms; Abstract; 1.1. Introduction; 1.2. Particle Swarm Optimization; 1.3. Artificial Bee Colony Algorithm; 1.4. Micro Artificial Bee Colony Algorithm; 1.5. Differential Evolution; 1.6. Bacterial Foraging Optimization Algorithm; References; Chapter Two: Data Classification Using Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron; Abstract; 2.1. Introduction; 2.2. Support Vector Machines; 2.3. Evolutionary algorithms
  • 2.4. The Kernel Adatron algorithm2.5. Kernel Adatron trained with evolutionary algorithms; 2.6. Results using benchmark repository datasets; 2.7. Application to classify electromyographic signals; 2.8. Conclusions; References; Chapter Three: Reconstruction of 3D Surfaces Using RBF Adjusted with PSO; Abstract; 3.1. Introduction; 3.2. Radial basis functions; 3.3. Interpolation of surfaces with RBF and PSO; 3.4. Conclusion; References; Chapter Four: Soft Computing Applications in Robot Vision; Abstract; 4.1. Introduction; 4.2. Image tracking; 4.3. Plane detection; 4.4. Conclusion; References
  • Chapter Five: Soft Computing Applications in Mobile RoboticsAbstract; 5.1. Introduction to mobile robotics; 5.2. Nonholonomic mobile robot navigation; 5.3. Holonomic mobile robot navigation; 5.4. Conclusion; References; Chapter Six: Particle Swarm Optimization to Improve Neural Identifiers for Discrete-time Unknown Nonlinear Systems; Abstract; 6.1. Introduction; 6.2. Particle-swarm-based approach of a real-time discrete neural identifier for Linear Induction Motors; 6.3. Neural model with particle swarm optimization Kalman learning for forecasting in smart grids; 6.4. Conclusions; References
  • Chapter Seven: Bio-inspired Algorithms to Improve Neural Controllers for Discrete-time Unknown Nonlinear SystemAbstract; 7.1. Neural Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.2. Neural-PSO Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.3. Neural-BFO Second-Order Sliding Mode Controller for unknown discrete-time nonlinear systems; 7.4. Comparative analysis; 7.5. Conclusions; References; Chapter Eight: Final Remarks; Index
Control code
SCIDI1021172444
Dimensions
unknown
Edition
First edition.
Extent
1 online resource.
File format
unknown
Form of item
online
Isbn
9780128137895
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • on1021172444
  • (OCoLC)1021172444

Library Locations

Processing Feedback ...