Coverart for item
The Resource Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)

Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)

Label
Biomechanics of hard tissues : modeling, testing, and materials
Title
Biomechanics of hard tissues
Title remainder
modeling, testing, and materials
Statement of responsibility
edited by Andreas Öchsner, Waqar Ahmed
Contributor
Subject
Language
eng
Summary
This monograph assembles expert knowledge on the latest biomechanical modeling and testing of hard tissues, coupled with a concise introduction to the structural and physical properties of bone and cartilage. A strong focus lies on the current advances in understanding bone structure and function from a materials science perspective, providing practical knowledge on how to model, simulate and predict the mechanical behavior of bone. The book presents directly applicable methods for designing and testing the performance of artificial bones and joint replacements, while addressing innovative and
Cataloging source
N$T
Dewey number
617.47
Illustrations
illustrations
Index
index present
LC call number
QP303
LC item number
.B5685 2010eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Öchsner, Andreas
  • Ahmed, Waqar
http://library.link/vocab/subjectName
  • Human mechanics
  • Musculoskeletal system
  • Biomechanics
Label
Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
Instantiates
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.1.2.
  • Growth of Living Organisms
  • 1.1.2.1.
  • Ring-Shaped Grain Boundary
  • 1.1.3.
  • Planarity of Biological Structures
  • 1.2.
  • Macroscopic Structure of the Bone
  • 1.2.1.
  • Growth of the Bone
  • Machine generated contents note:
  • 1.2.2.
  • Structure of the Body
  • 1.2.3.
  • Macroscopic Structure of Skeleton
  • 1.2.4.
  • Apatite in the Bone
  • 1.2.5.
  • Structure of the Bone
  • 1.3.
  • Microscopic Structure of the Bone
  • 1.
  • 1.3.1.
  • General
  • 1.3.2.
  • Osteon
  • 1.3.3.
  • Bone Innervation
  • 1.3.3.1.
  • Anatomy of Bone Innervation
  • 1.3.4.
  • Bone Cells
  • Bone and Cartilage -- its Structure and Physical Properties
  • 1.3.4.1.
  • Cells
  • 1.3.4.2.
  • Cell Membrane
  • 1.3.4.3.
  • Membrane Transport
  • 1.3.4.4.
  • Bone Cell Types
  • 1.3.4.5.
  • Osteoclasts
  • Ryszard Wojnar
  • 1.3.5.
  • Cellular Image -- OPG/RANK/RANKL Signaling System
  • 1.3.5.1.
  • Osteoprotegerin
  • 1.3.5.2.
  • RANK/RANKL
  • 1.3.5.3.
  • TACE
  • 1.3.5.4.
  • Bone Modeling and Remodeling
  • 1.1.
  • 1.3.6.
  • Proteins and Amino Acids
  • Introduction
  • 1.1.1.
  • The Structure of Living Organisms
  • 1.3.9.1.
  • Thermodynamics
  • 1.3.9.2.
  • Ideal Chain
  • 1.3.9.3.
  • Wormlike Chain
  • 1.3.9.4.
  • Architecture of Biological Fibers
  • 1.3.9.5.
  • Architecture of Collagen Fibers in Human Osteon
  • 1.3.7.
  • 1.3.9.6.
  • Collagen Elasticity
  • 1.4.
  • Remarks and Conclusions
  • 1.5.
  • Comments
  • 1.6.
  • Acknowledgments
  • References
  • Further Reading
  • Collagen and its Properties
  • 2.
  • Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements
  • Carlos R. M. Roesler
  • 2.1.
  • Introduction
  • 2.2.
  • Mechanical Adaptation of Bone
  • 2.3.
  • Constitutive Models
  • 2.3.1.
  • 1.3.7.1.
  • Bone Constitutive Model
  • 2.3.2.
  • Interface Constitutive Model
  • 2.3.3.
  • Model for Periprosthetic Adaptation
  • 2.3.4.
  • Model for Interfacial Adaptation
  • 2.4.
  • Numerical Examples
  • 2.5.
  • Molecular Structure
  • Final Remarks
  • 2.6.
  • Acknowledgments
  • References
  • 3.
  • Bone as a Composite Material
  • Virginia L. Ferguson
  • 3.1.
  • Introduction
  • 3.2.
  • 1.3.8.
  • Bone Phases
  • 3.2.1.
  • Organic
  • Geometry of Triple Helix
  • 1.3.9.
  • Polymer Thermodynamics
  • 3.3.1.
  • Organic Matrix
  • 3.3.2.
  • Mineral Phase
  • 3.3.3.
  • Water
  • 3.3.4.
  • Elastic Modulus of Composite Materials
  • 3.4.
  • Bone as a Composite: Macroscopic Effects
  • 3.2.2.
  • 3.5.
  • Bone as a Composite: Microscale Effects
  • 3.6.
  • Bone as a Composite: Anisotropy Effects
  • 3.7.
  • Bone as a Composite: Implications
  • References
  • 4.
  • Mechanobiological Models for Bone Tissue. Applications to Implant Design
  • Manuel Doblare
  • Mineral
  • 4.1.
  • Introduction
  • 4.2.
  • Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing
  • 4.2.1.
  • Bone Remodeling
  • 4.2.2.
  • Bone Fracture Healing
  • 4.3.
  • Phenomenological Models of Bone Remodeling
  • 3.2.3.
  • 4.4.
  • Mechanistic Models of Bone Remodeling
  • 4.5.
  • Examples of Application of Bone Remodeling Models to Implant Design
  • 4.6.
  • Models of Tissue Differentiation. Application to Bone Fracture Healing
  • 4.7.
  • Mechanistic Models of Bone Fracture Healing
  • 4.8.
  • Examples of Application of Bone Fracture Healing Models to Implant Design
  • Physical Structure of Bone Material
  • 3.2.4.
  • Water
  • 3.3.
  • Bone Phase Material Properties
  • 5.2.
  • Tribological Testing of Orthopedic Implants
  • 5.3.
  • Tribological Testing of Tissue from a Living Body
  • 5.4.
  • Theoretical Analysis for Tribological Issues
  • References
  • 6.
  • Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches
  • Seyed Mohammad Hossein Hosseini
  • 4.9.
  • 6.1.
  • Introduction
  • 6.2.
  • Summary of Elasticity Theory and Continuum Mechanics
  • 6.2.1.
  • Stress Tensor and Decomposition
  • 6.2.2.
  • Invariants
  • 6.3.
  • Constitutive Equations
  • Concluding Remarks
  • 6.3.1.
  • Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials
  • 6.3.2.
  • Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials
  • 6.3.3.
  • Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure
  • 6.3.4.
  • Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials
  • 6.3.5.
  • Plastic Behavior, Failure, and Limit Surface
  • References
  • 6.4.
  • The Structure of Trabecular Bone and Modeling Approaches
  • 5.
  • Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation
  • Yoshitaka Nakanishi
  • 5.1.
  • Introduction
  • 7.1.
  • Introduction
  • 7.2.
  • Mechanical Stimulation on Cells
  • 7.2.1.
  • Various Mechanical Stimulations
  • 7.2.2.
  • Techniques for Applying Mechanical Loading
  • 7.2.3.
  • Mechanotransduction
  • 6.4.1.
  • 7.2.4.
  • Mechanical Influences on Stem Cell
  • 7.3.
  • Magnetic Stimulation on Cells
  • 7.3.1.
  • Magnetic Nanoparticles for Cell Stimulation
  • 7.3.1.1.
  • Properties of Magnetic Nanoparticles
  • 7.3.1.2.
  • Functionalization of Magnetic Nanoparticles
  • Structural Analogies: Cellular Plastics and Metals
  • 7.3.2.
  • Magnetic Stimulation
  • 7.3.2.1.
  • Magnetic Pulling
  • 7.3.2.2.
  • Magnetic Twisting
  • 7.3.3.
  • Limitation of Using Magnetic Nanoparticles for Cell Stimulation
  • 7.3.4.
  • Magnetic Stimulation and Cell Conditioning for Tissue Regeneration
  • 6.5.
  • 7.4.
  • Summary
  • References
  • 8.
  • Joint Replacement Implants
  • Duncan E. T. Shepherd
  • 8.1.
  • Introduction
  • 8.2.
  • Biomaterials for Joint Replacement Implants
  • Conclusions
  • 8.3.
  • Joint Replacement Implants for Weight-Bearing Joints
  • 8.3.1.
  • Introduction
  • 8.3.2.
  • Hip Joint Replacement
  • References
  • 7.
  • Mechanical and Magnetic Stimulation on Cells for Bone Regeneration
  • Kuo-Kang Liu
  • 8.4.1.
  • Introduction
  • 8.4.2.
  • Finger Joint Replacement
  • 8.4.3.
  • Wrist Joint Replacement
  • 8.5.
  • Design of Joint Replacement Implants
  • 8.5.1.
  • Introduction
  • 8.3.3.
  • 8.5.2.
  • Feasibility
  • 8.5.3.
  • Design
  • 8.5.4.
  • Verification
  • 8.5.5.
  • Manufacture
  • 8.5.6.
  • Validation
  • Knee Joint Replacement
  • 8.5.7.
  • Design Transfer
  • 8.5.8.
  • Design Changes
  • 8.6.
  • Conclusions
  • References
  • 9.
  • Interstitial Fluid Movement in Cortical Bone Tissue
  • Stephen C. Cowin
  • 8.3.4.
  • 9.1.
  • Introduction
  • 9.2.
  • Arterial Supply
  • 9.2.1.
  • Overview of the Arterial System in Bone
  • 9.2.2.
  • Dynamics of the Arterial System
  • 9.2.3.
  • Transcortical Arterial Hemodynamics
  • Ankle Joint Replacement
  • 9.2.4.
  • The Arterial System in Small Animals may be Different from that in Humans
  • 9.3.
  • Microvascular Network of the Medullary Canal
  • 9.4.
  • Microvascular Network of Cortical Bone
  • 9.5.
  • Venous Drainage of Bone
  • 9.6.
  • Bone Lymphatics and Blood Vessel Trans-Wall Transport
  • 8.3.5.
  • Methods of Fixation for Weight-Bearing Joint Replacement Implants
  • 8.4.
  • Joint Replacement Implants for Joints of the Hand and Wrist
  • 9.7.4.
  • Cancellous Bone Porosity
  • 9.7.5.
  • The Interfaces between the Levels of Bone Porosity
  • 9.8.
  • Interstitial Fluid Flow
  • 9.8.1.
  • The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure)
  • 9.8.2.
  • Interstitial Flow and Mechanosensation
  • 9.7.
  • 9.8.3.
  • Electrokinetic Effects in Bone
  • 9.8.4.
  • The Poroelastic Model for the Cortical Bone
  • 9.8.5.
  • Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities
  • 9.8.6.
  • Implications for the Determination of the Permeabilities
  • References
  • 10.
  • The Levels of Bone Porosity and their Bone Interfaces
  • Bone Implant Design Using Optimization Methods
  • Joao Folgado
  • 10.1.
  • Introduction
  • 10.2.
  • Optimization Methods for Implant Design
  • 10.2.1.
  • Cemented Stems
  • 10.2.2.
  • Uncemented Stems
  • 9.7.1.
  • 10.3.
  • Design Requirements for a Cementless Hip Stem
  • 10.3.1.
  • Implant Stability
  • 10.3.2.
  • Stress Shielding Effect
  • The Vascular Porosity (PV)
  • 9.7.2.
  • The Lacunar-Canalicular Porosity (PLC)
  • 9.7.3.
  • The Collagen-Hydroxyapatite Porosity (PCA)
  • 10.4.4.
  • Objective Function for Bone Remodeling
  • 10.4.5.
  • Multicriteria Objective Function
  • 10.5.
  • Computational Model
  • 10.5.1.
  • Optimization Algorithm
  • 10.5.2.
  • Finite Element Model
  • 10.4.
  • 10.6.
  • Optimal Geometries Analysis
  • 10.6.1.
  • Optimal Geometry for Tangential Interfacial Displacement -- fd
  • 10.6.2.
  • Optimal Geometry for Normal Contact Stress -ft
  • 10.6.3.
  • Optimal Geometry for Remodeling -fr
  • 10.6.4.
  • Multicriteria Optimal Geometries -fmc
  • Multicriteria Formulation for Hip Stem Design
  • 10.7.
  • Long-Term Performance of Optimized Implants
  • 10.8.
  • Concluding Remarks
  • References
  • 10.4.1.
  • Design Variables and Geometry
  • 10.4.2.
  • Objective Function for Interface Displacement
  • 10.4.3.
  • Objective Function for Interface Stress
Control code
ocn758389527
Dimensions
unknown
Extent
1 online resource (xvi, 306 p.)
File format
unknown
Form of item
  • online
  • electronic
Isbn
9783527632732
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
ill. (some col.).
Quality assurance targets
not applicable
Reformatting quality
unknown
Reproduction note
Electronic resource
Sound
unknown sound
Specific material designation
remote
Label
Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.1.2.
  • Growth of Living Organisms
  • 1.1.2.1.
  • Ring-Shaped Grain Boundary
  • 1.1.3.
  • Planarity of Biological Structures
  • 1.2.
  • Macroscopic Structure of the Bone
  • 1.2.1.
  • Growth of the Bone
  • Machine generated contents note:
  • 1.2.2.
  • Structure of the Body
  • 1.2.3.
  • Macroscopic Structure of Skeleton
  • 1.2.4.
  • Apatite in the Bone
  • 1.2.5.
  • Structure of the Bone
  • 1.3.
  • Microscopic Structure of the Bone
  • 1.
  • 1.3.1.
  • General
  • 1.3.2.
  • Osteon
  • 1.3.3.
  • Bone Innervation
  • 1.3.3.1.
  • Anatomy of Bone Innervation
  • 1.3.4.
  • Bone Cells
  • Bone and Cartilage -- its Structure and Physical Properties
  • 1.3.4.1.
  • Cells
  • 1.3.4.2.
  • Cell Membrane
  • 1.3.4.3.
  • Membrane Transport
  • 1.3.4.4.
  • Bone Cell Types
  • 1.3.4.5.
  • Osteoclasts
  • Ryszard Wojnar
  • 1.3.5.
  • Cellular Image -- OPG/RANK/RANKL Signaling System
  • 1.3.5.1.
  • Osteoprotegerin
  • 1.3.5.2.
  • RANK/RANKL
  • 1.3.5.3.
  • TACE
  • 1.3.5.4.
  • Bone Modeling and Remodeling
  • 1.1.
  • 1.3.6.
  • Proteins and Amino Acids
  • Introduction
  • 1.1.1.
  • The Structure of Living Organisms
  • 1.3.9.1.
  • Thermodynamics
  • 1.3.9.2.
  • Ideal Chain
  • 1.3.9.3.
  • Wormlike Chain
  • 1.3.9.4.
  • Architecture of Biological Fibers
  • 1.3.9.5.
  • Architecture of Collagen Fibers in Human Osteon
  • 1.3.7.
  • 1.3.9.6.
  • Collagen Elasticity
  • 1.4.
  • Remarks and Conclusions
  • 1.5.
  • Comments
  • 1.6.
  • Acknowledgments
  • References
  • Further Reading
  • Collagen and its Properties
  • 2.
  • Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements
  • Carlos R. M. Roesler
  • 2.1.
  • Introduction
  • 2.2.
  • Mechanical Adaptation of Bone
  • 2.3.
  • Constitutive Models
  • 2.3.1.
  • 1.3.7.1.
  • Bone Constitutive Model
  • 2.3.2.
  • Interface Constitutive Model
  • 2.3.3.
  • Model for Periprosthetic Adaptation
  • 2.3.4.
  • Model for Interfacial Adaptation
  • 2.4.
  • Numerical Examples
  • 2.5.
  • Molecular Structure
  • Final Remarks
  • 2.6.
  • Acknowledgments
  • References
  • 3.
  • Bone as a Composite Material
  • Virginia L. Ferguson
  • 3.1.
  • Introduction
  • 3.2.
  • 1.3.8.
  • Bone Phases
  • 3.2.1.
  • Organic
  • Geometry of Triple Helix
  • 1.3.9.
  • Polymer Thermodynamics
  • 3.3.1.
  • Organic Matrix
  • 3.3.2.
  • Mineral Phase
  • 3.3.3.
  • Water
  • 3.3.4.
  • Elastic Modulus of Composite Materials
  • 3.4.
  • Bone as a Composite: Macroscopic Effects
  • 3.2.2.
  • 3.5.
  • Bone as a Composite: Microscale Effects
  • 3.6.
  • Bone as a Composite: Anisotropy Effects
  • 3.7.
  • Bone as a Composite: Implications
  • References
  • 4.
  • Mechanobiological Models for Bone Tissue. Applications to Implant Design
  • Manuel Doblare
  • Mineral
  • 4.1.
  • Introduction
  • 4.2.
  • Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing
  • 4.2.1.
  • Bone Remodeling
  • 4.2.2.
  • Bone Fracture Healing
  • 4.3.
  • Phenomenological Models of Bone Remodeling
  • 3.2.3.
  • 4.4.
  • Mechanistic Models of Bone Remodeling
  • 4.5.
  • Examples of Application of Bone Remodeling Models to Implant Design
  • 4.6.
  • Models of Tissue Differentiation. Application to Bone Fracture Healing
  • 4.7.
  • Mechanistic Models of Bone Fracture Healing
  • 4.8.
  • Examples of Application of Bone Fracture Healing Models to Implant Design
  • Physical Structure of Bone Material
  • 3.2.4.
  • Water
  • 3.3.
  • Bone Phase Material Properties
  • 5.2.
  • Tribological Testing of Orthopedic Implants
  • 5.3.
  • Tribological Testing of Tissue from a Living Body
  • 5.4.
  • Theoretical Analysis for Tribological Issues
  • References
  • 6.
  • Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches
  • Seyed Mohammad Hossein Hosseini
  • 4.9.
  • 6.1.
  • Introduction
  • 6.2.
  • Summary of Elasticity Theory and Continuum Mechanics
  • 6.2.1.
  • Stress Tensor and Decomposition
  • 6.2.2.
  • Invariants
  • 6.3.
  • Constitutive Equations
  • Concluding Remarks
  • 6.3.1.
  • Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials
  • 6.3.2.
  • Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials
  • 6.3.3.
  • Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure
  • 6.3.4.
  • Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials
  • 6.3.5.
  • Plastic Behavior, Failure, and Limit Surface
  • References
  • 6.4.
  • The Structure of Trabecular Bone and Modeling Approaches
  • 5.
  • Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation
  • Yoshitaka Nakanishi
  • 5.1.
  • Introduction
  • 7.1.
  • Introduction
  • 7.2.
  • Mechanical Stimulation on Cells
  • 7.2.1.
  • Various Mechanical Stimulations
  • 7.2.2.
  • Techniques for Applying Mechanical Loading
  • 7.2.3.
  • Mechanotransduction
  • 6.4.1.
  • 7.2.4.
  • Mechanical Influences on Stem Cell
  • 7.3.
  • Magnetic Stimulation on Cells
  • 7.3.1.
  • Magnetic Nanoparticles for Cell Stimulation
  • 7.3.1.1.
  • Properties of Magnetic Nanoparticles
  • 7.3.1.2.
  • Functionalization of Magnetic Nanoparticles
  • Structural Analogies: Cellular Plastics and Metals
  • 7.3.2.
  • Magnetic Stimulation
  • 7.3.2.1.
  • Magnetic Pulling
  • 7.3.2.2.
  • Magnetic Twisting
  • 7.3.3.
  • Limitation of Using Magnetic Nanoparticles for Cell Stimulation
  • 7.3.4.
  • Magnetic Stimulation and Cell Conditioning for Tissue Regeneration
  • 6.5.
  • 7.4.
  • Summary
  • References
  • 8.
  • Joint Replacement Implants
  • Duncan E. T. Shepherd
  • 8.1.
  • Introduction
  • 8.2.
  • Biomaterials for Joint Replacement Implants
  • Conclusions
  • 8.3.
  • Joint Replacement Implants for Weight-Bearing Joints
  • 8.3.1.
  • Introduction
  • 8.3.2.
  • Hip Joint Replacement
  • References
  • 7.
  • Mechanical and Magnetic Stimulation on Cells for Bone Regeneration
  • Kuo-Kang Liu
  • 8.4.1.
  • Introduction
  • 8.4.2.
  • Finger Joint Replacement
  • 8.4.3.
  • Wrist Joint Replacement
  • 8.5.
  • Design of Joint Replacement Implants
  • 8.5.1.
  • Introduction
  • 8.3.3.
  • 8.5.2.
  • Feasibility
  • 8.5.3.
  • Design
  • 8.5.4.
  • Verification
  • 8.5.5.
  • Manufacture
  • 8.5.6.
  • Validation
  • Knee Joint Replacement
  • 8.5.7.
  • Design Transfer
  • 8.5.8.
  • Design Changes
  • 8.6.
  • Conclusions
  • References
  • 9.
  • Interstitial Fluid Movement in Cortical Bone Tissue
  • Stephen C. Cowin
  • 8.3.4.
  • 9.1.
  • Introduction
  • 9.2.
  • Arterial Supply
  • 9.2.1.
  • Overview of the Arterial System in Bone
  • 9.2.2.
  • Dynamics of the Arterial System
  • 9.2.3.
  • Transcortical Arterial Hemodynamics
  • Ankle Joint Replacement
  • 9.2.4.
  • The Arterial System in Small Animals may be Different from that in Humans
  • 9.3.
  • Microvascular Network of the Medullary Canal
  • 9.4.
  • Microvascular Network of Cortical Bone
  • 9.5.
  • Venous Drainage of Bone
  • 9.6.
  • Bone Lymphatics and Blood Vessel Trans-Wall Transport
  • 8.3.5.
  • Methods of Fixation for Weight-Bearing Joint Replacement Implants
  • 8.4.
  • Joint Replacement Implants for Joints of the Hand and Wrist
  • 9.7.4.
  • Cancellous Bone Porosity
  • 9.7.5.
  • The Interfaces between the Levels of Bone Porosity
  • 9.8.
  • Interstitial Fluid Flow
  • 9.8.1.
  • The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure)
  • 9.8.2.
  • Interstitial Flow and Mechanosensation
  • 9.7.
  • 9.8.3.
  • Electrokinetic Effects in Bone
  • 9.8.4.
  • The Poroelastic Model for the Cortical Bone
  • 9.8.5.
  • Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities
  • 9.8.6.
  • Implications for the Determination of the Permeabilities
  • References
  • 10.
  • The Levels of Bone Porosity and their Bone Interfaces
  • Bone Implant Design Using Optimization Methods
  • Joao Folgado
  • 10.1.
  • Introduction
  • 10.2.
  • Optimization Methods for Implant Design
  • 10.2.1.
  • Cemented Stems
  • 10.2.2.
  • Uncemented Stems
  • 9.7.1.
  • 10.3.
  • Design Requirements for a Cementless Hip Stem
  • 10.3.1.
  • Implant Stability
  • 10.3.2.
  • Stress Shielding Effect
  • The Vascular Porosity (PV)
  • 9.7.2.
  • The Lacunar-Canalicular Porosity (PLC)
  • 9.7.3.
  • The Collagen-Hydroxyapatite Porosity (PCA)
  • 10.4.4.
  • Objective Function for Bone Remodeling
  • 10.4.5.
  • Multicriteria Objective Function
  • 10.5.
  • Computational Model
  • 10.5.1.
  • Optimization Algorithm
  • 10.5.2.
  • Finite Element Model
  • 10.4.
  • 10.6.
  • Optimal Geometries Analysis
  • 10.6.1.
  • Optimal Geometry for Tangential Interfacial Displacement -- fd
  • 10.6.2.
  • Optimal Geometry for Normal Contact Stress -ft
  • 10.6.3.
  • Optimal Geometry for Remodeling -fr
  • 10.6.4.
  • Multicriteria Optimal Geometries -fmc
  • Multicriteria Formulation for Hip Stem Design
  • 10.7.
  • Long-Term Performance of Optimized Implants
  • 10.8.
  • Concluding Remarks
  • References
  • 10.4.1.
  • Design Variables and Geometry
  • 10.4.2.
  • Objective Function for Interface Displacement
  • 10.4.3.
  • Objective Function for Interface Stress
Control code
ocn758389527
Dimensions
unknown
Extent
1 online resource (xvi, 306 p.)
File format
unknown
Form of item
  • online
  • electronic
Isbn
9783527632732
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other physical details
ill. (some col.).
Quality assurance targets
not applicable
Reformatting quality
unknown
Reproduction note
Electronic resource
Sound
unknown sound
Specific material designation
remote

Library Locations

Processing Feedback ...