Coverart for item
The Resource Block transceivers : OFDM and beyond, Paulo S.R. Diniz, Wallace A. Martins, Markus V.S. Lima, (electronic book)

Block transceivers : OFDM and beyond, Paulo S.R. Diniz, Wallace A. Martins, Markus V.S. Lima, (electronic book)

Label
Block transceivers : OFDM and beyond
Title
Block transceivers
Title remainder
OFDM and beyond
Statement of responsibility
Paulo S.R. Diniz, Wallace A. Martins, Markus V.S. Lima
Creator
Contributor
Subject
Language
eng
Summary
The demand for data traffic over mobile communication networks has substantially increased during the last decade. As a result, these mobile broadband devices spend the available spectrum fiercely, requiring the search for new technologies. In transmissions where the channel presents a frequency selective behavior, multicarrier modulation (MCM) schemes have proven to be more efficient, in terms of spectral usage, than conventional modulations and spread spectrum techniques. The orthogonal frequency-division multiplexing (OFDM) is the most popular MCM method, since it not only increases spectral efficiency but also yields simple transceivers. All OFDM-based systems, including the single-carrier with frequency-division equalization (SC-FD), transmit redundancy in order to cope with the problem of interference among symbols. This book presents OFDM-inspired systems that are able to, at most, halve the amount of redundancy used by OFDM systems while keeping the computational complexity comparable. Such systems, herein called memoryless linear time-invariant (LTI) transceivers with reduced redundancy, require low-complexity arithmetical operations and fast algorithms. In addition, whenever the block transmitter and receiver have memory and/or are linear time-varying (LTV), it is possible to reduce the redundancy in the transmission even further, as also discussed in this book. For the transceivers with memory it is possible to eliminate the redundancy at the cost of making the channel equalization more difficult. Moreover, when time-varying block transceivers are also employed, then the amount of redundancy can be as low as a single symbol per block, regardless of the size of the channel memory. With the techniques presented in the book it is possible to address what lies beyond the use of OFDM-related solutions in broadband transmissions
Member of
Cataloging source
CaBNVSL
http://library.link/vocab/creatorDate
1956-
http://library.link/vocab/creatorName
Diniz, Paulo Sergio Ramirez
Dewey number
621.38456
Illustrations
illustrations
Index
no index present
LC call number
TK6564.4.C45
LC item number
D553 2012
Literary form
non fiction
Nature of contents
  • dictionaries
  • abstracts summaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
  • 1983-
  • 1984-
http://library.link/vocab/relatedWorkOrContributorName
  • Martins, Wallace A.
  • Lima, Markus V. S.
http://library.link/vocab/subjectName
  • Cell phones
  • Radio
Target audience
  • adult
  • specialized
Label
Block transceivers : OFDM and beyond, Paulo S.R. Diniz, Wallace A. Martins, Markus V.S. Lima, (electronic book)
Instantiates
Publication
Bibliography note
Includes bibliographical references (p. 175-182)
Color
multicolored
Contents
  • Preface -- Acknowledgments -- List of abbreviations -- List of notations --
  • 1. The big picture -- 1.1 Introduction -- 1.2 Digital communications systems -- 1.3 Orthogonal frequency-division multiplexing -- 1.3.1 Wired systems -- 1.3.2 Wireless systems and networks -- 1.3.3 Basics of OFDM -- 1.4 Cellular division -- 1.5 Multiple access methods -- 1.5.1 TDMA -- 1.5.2 FDMA -- 1.5.3 CDMA -- 1.5.4 OFDMA -- 1.6 Duplex methods -- 1.6.1 TDD -- 1.6.2 FDD -- 1.7 Wireless channels: fading and modeling -- 1.7.1 Fading -- 1.7.2 Modeling -- 1.8 Block transmission -- 1.9 Multicarrier systems -- 1.10 OFDM as MIMO system -- 1.11 Multiple antenna configurations -- 1.12 Mitigating interference and noise -- 1.13 Concluding remarks --
  • 2. Transmultiplexers -- 2.1 Introduction -- 2.2 Multirate signal processing -- 2.3 Filter-bank transceivers -- 2.3.1 Time-domain representation -- 2.3.2 Polyphase representation -- 2.4 Memoryless block-based systems -- 2.4.1 CP-OFDM -- 2.4.2 ZP-OFDM -- 2.4.3 CP-SC-FD -- 2.4.4 ZP-SC-FD -- 2.4.5 ZP-ZJ transceivers -- 2.5 Concluding remarks --
  • 3. OFDM -- 3.1 Introduction -- 3.2 Analog OFDM -- 3.2.1 From TDM to FDM -- 3.2.2 Orthogonality among subcarriers -- 3.2.3 Orthogonality at receiver: the role of guard interval -- 3.2.4 Spectral efficiency, PAPR, CFO, and I/Q imbalance -- 3.2.5 Implementation sketch -- 3.3 Discrete-time OFDM -- 3.3.1 Discretization of the OFDM symbol -- 3.3.2 Discretization at receiver: the CP-OFDM -- 3.3.3 Discrete-time multipath channel -- 3.3.4 Block-based model -- 3.4 Other OFDM-based systems -- 3.4.1 SC-FD -- 3.4.2 ZP-based schemes -- 3.4.3 Coded OFDM -- 3.4.4 DMT -- 3.5 Concluding remarks --
  • 4. Memoryless LTI transceivers with reduced redundancy -- 4.1 Introduction -- 4.2 Reduced-redundancy systems: the ZP-ZJ model revisited -- 4.3 Structured matrix representations -- 4.3.1 Displacement-rank approach -- 4.3.2 Toeplitz, Vandermonde, Cauchy, and Bezoutian matrices -- 4.3.3 Properties of displacement operators -- 4.4 DFT-based representations of Bezoutian matrices -- 4.4.1 Representations of Cauchy matrices -- 4.4.2 Transformations of Bezoutian matrices into Cauchy matrices -- 4.4.3 Efficient Bezoutian decompositions -- 4.5 Reduced-redundancy systems -- 4.5.1 Complexity comparisons -- 4.5.2 Examples -- 4.6 Concluding remarks --
  • 5. FIR LTV transceivers with reduced redundancy -- 5.1 Introduction -- 5.2 Time-varying reduced-redundancy systems with memory -- 5.2.1 FIR MIMO matrices of LTI transceivers -- 5.2.2 FIR MIMO matrices of LTV transceivers -- 5.3 Conditions for achieving ZF solutions -- 5.3.1 The ZF constraint -- 5.3.2 Lower bound on the receiver length -- 5.3.3 Lower bound on the amount of redundancy -- 5.3.4 Achieving the lower bound of redundancy -- 5.3.5 Role of the time-variance property -- 5.4 Transceivers with no redundancy -- 5.5 Examples -- 5.6 Concluding remarks --
  • Bibliography -- Authors' biographies
Control code
201206COM007
Dimensions
unknown
Extent
1 electronic text (xxi, 184 p.)
File format
multiple file formats
Form of item
online
Isbn
9781608458301
Issn
1932-1708
Other physical details
ill., digital file.
Reformatting quality
access
Specific material designation
remote
Label
Block transceivers : OFDM and beyond, Paulo S.R. Diniz, Wallace A. Martins, Markus V.S. Lima, (electronic book)
Publication
Bibliography note
Includes bibliographical references (p. 175-182)
Color
multicolored
Contents
  • Preface -- Acknowledgments -- List of abbreviations -- List of notations --
  • 1. The big picture -- 1.1 Introduction -- 1.2 Digital communications systems -- 1.3 Orthogonal frequency-division multiplexing -- 1.3.1 Wired systems -- 1.3.2 Wireless systems and networks -- 1.3.3 Basics of OFDM -- 1.4 Cellular division -- 1.5 Multiple access methods -- 1.5.1 TDMA -- 1.5.2 FDMA -- 1.5.3 CDMA -- 1.5.4 OFDMA -- 1.6 Duplex methods -- 1.6.1 TDD -- 1.6.2 FDD -- 1.7 Wireless channels: fading and modeling -- 1.7.1 Fading -- 1.7.2 Modeling -- 1.8 Block transmission -- 1.9 Multicarrier systems -- 1.10 OFDM as MIMO system -- 1.11 Multiple antenna configurations -- 1.12 Mitigating interference and noise -- 1.13 Concluding remarks --
  • 2. Transmultiplexers -- 2.1 Introduction -- 2.2 Multirate signal processing -- 2.3 Filter-bank transceivers -- 2.3.1 Time-domain representation -- 2.3.2 Polyphase representation -- 2.4 Memoryless block-based systems -- 2.4.1 CP-OFDM -- 2.4.2 ZP-OFDM -- 2.4.3 CP-SC-FD -- 2.4.4 ZP-SC-FD -- 2.4.5 ZP-ZJ transceivers -- 2.5 Concluding remarks --
  • 3. OFDM -- 3.1 Introduction -- 3.2 Analog OFDM -- 3.2.1 From TDM to FDM -- 3.2.2 Orthogonality among subcarriers -- 3.2.3 Orthogonality at receiver: the role of guard interval -- 3.2.4 Spectral efficiency, PAPR, CFO, and I/Q imbalance -- 3.2.5 Implementation sketch -- 3.3 Discrete-time OFDM -- 3.3.1 Discretization of the OFDM symbol -- 3.3.2 Discretization at receiver: the CP-OFDM -- 3.3.3 Discrete-time multipath channel -- 3.3.4 Block-based model -- 3.4 Other OFDM-based systems -- 3.4.1 SC-FD -- 3.4.2 ZP-based schemes -- 3.4.3 Coded OFDM -- 3.4.4 DMT -- 3.5 Concluding remarks --
  • 4. Memoryless LTI transceivers with reduced redundancy -- 4.1 Introduction -- 4.2 Reduced-redundancy systems: the ZP-ZJ model revisited -- 4.3 Structured matrix representations -- 4.3.1 Displacement-rank approach -- 4.3.2 Toeplitz, Vandermonde, Cauchy, and Bezoutian matrices -- 4.3.3 Properties of displacement operators -- 4.4 DFT-based representations of Bezoutian matrices -- 4.4.1 Representations of Cauchy matrices -- 4.4.2 Transformations of Bezoutian matrices into Cauchy matrices -- 4.4.3 Efficient Bezoutian decompositions -- 4.5 Reduced-redundancy systems -- 4.5.1 Complexity comparisons -- 4.5.2 Examples -- 4.6 Concluding remarks --
  • 5. FIR LTV transceivers with reduced redundancy -- 5.1 Introduction -- 5.2 Time-varying reduced-redundancy systems with memory -- 5.2.1 FIR MIMO matrices of LTI transceivers -- 5.2.2 FIR MIMO matrices of LTV transceivers -- 5.3 Conditions for achieving ZF solutions -- 5.3.1 The ZF constraint -- 5.3.2 Lower bound on the receiver length -- 5.3.3 Lower bound on the amount of redundancy -- 5.3.4 Achieving the lower bound of redundancy -- 5.3.5 Role of the time-variance property -- 5.4 Transceivers with no redundancy -- 5.5 Examples -- 5.6 Concluding remarks --
  • Bibliography -- Authors' biographies
Control code
201206COM007
Dimensions
unknown
Extent
1 electronic text (xxi, 184 p.)
File format
multiple file formats
Form of item
online
Isbn
9781608458301
Issn
1932-1708
Other physical details
ill., digital file.
Reformatting quality
access
Specific material designation
remote

Library Locations

Processing Feedback ...