Coverart for item
The Resource Computational and cognitive neuroscience of vision, Qi Zhao, editor

Computational and cognitive neuroscience of vision, Qi Zhao, editor

Label
Computational and cognitive neuroscience of vision
Title
Computational and cognitive neuroscience of vision
Statement of responsibility
Qi Zhao, editor
Contributor
Subject
Language
eng
Summary
1 Neural Mechanisms of Saliency, Attention, and Orienting; Abstract; 1 Overview; 2 The Visual Orienting Network; 2.1 Superior Colliculus; 2.2 Occipital Cortex; 2.3 Fronto-Parietal Cortices; 2.4 Basal Ganglia; 2.5 Brainstem; 3 Neural Representations of Visual Saliency; 4 Neural Representations of Behavioral Priority; 4.1 Spatial Attention; 4.2 Target Selection; 5 Conclusion; References; 2 Insights on Vision Derived from Studying Human Single Neurons; 1 Latency; 2 Visual Selectivity of Neurons in the Human MTL; 3 Invariance; 4 Grandmother Cells; 5 Topography of Tuning
Member of
Cataloging source
EBLCP
Dewey number
612.84
Index
no index present
LC call number
QP475
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Zhao, Qi
Series statement
Cognitive Science and Technology
http://library.link/vocab/subjectName
  • Vision
  • Cognitive neuroscience
  • Computational neuroscience
Label
Computational and cognitive neuroscience of vision, Qi Zhao, editor
Instantiates
Publication
Note
2.2 The Pupil Light Response Can Mark the Focus of Attention
Antecedent source
unknown
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Summary; 1 Neural Mechanisms of Saliency, Attention, and Orienting; Abstract; 1 Overview; 2 The Visual Orienting Network; 2.1 Superior Colliculus; 2.2 Occipital Cortex; 2.3 Fronto-Parietal Cortices; 2.4 Basal Ganglia; 2.5 Brainstem; 3 Neural Representations of Visual Saliency; 4 Neural Representations of Behavioral Priority; 4.1 Spatial Attention; 4.2 Target Selection; 5 Conclusion; References; 2 Insights on Vision Derived from Studying Human Single Neurons; 1 Latency; 2 Visual Selectivity of Neurons in the Human MTL; 3 Invariance; 4 Grandmother Cells; 5 Topography of Tuning
  • 6 Internally Generated Responses and Consciousness7 Memory; 8 Closing Remarks; References; 3 Recognition of Occluded Objects; 1 Visual System Hierarchy; 2 The Computational Problem of Object Completion; 2.1 Amodal Completion; 2.2 From Amodal Completion to Recognition of Occluded Objects; 3 Neural Representation of Occluded Objects; 4 Computational Models of Occluded Object Recognition; 4.1 Performance of Feed-Forward Models in Recognizing Occluded Objects; 4.2 Beyond Feed-Forward Models; References; Towards a Theory of Computation in the Visual Cortex
  • 1 Cortical Filter Models of Form Processing1.1 The Linear-Nonlinear (LN) Model; 1.2 Divisive Normalization; 1.3 LN Cascade; 2 Cortical Filter Models Across Visual Cues; 2.1 Color Processing; 2.2 Binocular Disparity Processing; 2.3 Motion Processing; 3 Completing the Hierarchy: Models of the Visual Cortex; 3.1 Hubel and Wiesel Model; 3.2 Hierarchical Models: Formalism; 3.3 Models of Object Recognition; 3.4 Models Across Visual Cues; 4 Discussion and Concluding Remarks; 4.1 Why Hierarchies?; 4.2 Limitations; References; Invariant Recognition Predicts Tuning of Neurons in Sensory Cortex
  • 1 Appendix1.1 Retinal Processing; 1.2 Additional Evidence for Gabor Shapes as Templates in V1; 1.3 Hebbian Rule and Gabor-Like Functions; 1.4 Motion Determines a Consistent Orientation of the Gabor-Like Eigenfunctions; 1.5 Phase of Gabor RFs; References; Speed Versus Accuracy in Visual Search: Optimal Performance and Neural Implementations; 1 The Phenomenology of Visual Search; 2 Ideal Observers; 2.1 Sensory Input; 2.2 Optimality; 3 The Sequential Probability Ratio Test; 3.1 Notations; 3.2 S(Xt) for Homogeneous Discrimination; 3.3 S(Xt) for Homogeneous Search
  • 3.4 S(Xt) for Heterogeneous Search4 Model Prediction and Human Psychophysics; 4.1 Qualitative Fits; 4.2 Quantitative Fits; 5 Optimality Analysis; 5.1 Solving for the Ideal Observer; 5.2 Dynamic Programming; 5.3 Comparison with SPRT; 6 Spiking Network Implementation; 7 Chapter Summary; References; 7 The Pupil as Marker of Cognitive Processes; 1 The Pupil Is a Readily Accessible Marker of Neural Processes; 2 Modulation of the Pupil's Response to Light by Cognitive Factors; 2.1 Awareness and Imaginary Light Sources Modulate the Pupil Light Reflex
Dimensions
unknown
Extent
1 online resource (316 pages).
File format
unknown
Form of item
online
Isbn
9789811002137
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • ocn960166168
  • (OCoLC)960166168
Label
Computational and cognitive neuroscience of vision, Qi Zhao, editor
Publication
Note
2.2 The Pupil Light Response Can Mark the Focus of Attention
Antecedent source
unknown
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Summary; 1 Neural Mechanisms of Saliency, Attention, and Orienting; Abstract; 1 Overview; 2 The Visual Orienting Network; 2.1 Superior Colliculus; 2.2 Occipital Cortex; 2.3 Fronto-Parietal Cortices; 2.4 Basal Ganglia; 2.5 Brainstem; 3 Neural Representations of Visual Saliency; 4 Neural Representations of Behavioral Priority; 4.1 Spatial Attention; 4.2 Target Selection; 5 Conclusion; References; 2 Insights on Vision Derived from Studying Human Single Neurons; 1 Latency; 2 Visual Selectivity of Neurons in the Human MTL; 3 Invariance; 4 Grandmother Cells; 5 Topography of Tuning
  • 6 Internally Generated Responses and Consciousness7 Memory; 8 Closing Remarks; References; 3 Recognition of Occluded Objects; 1 Visual System Hierarchy; 2 The Computational Problem of Object Completion; 2.1 Amodal Completion; 2.2 From Amodal Completion to Recognition of Occluded Objects; 3 Neural Representation of Occluded Objects; 4 Computational Models of Occluded Object Recognition; 4.1 Performance of Feed-Forward Models in Recognizing Occluded Objects; 4.2 Beyond Feed-Forward Models; References; Towards a Theory of Computation in the Visual Cortex
  • 1 Cortical Filter Models of Form Processing1.1 The Linear-Nonlinear (LN) Model; 1.2 Divisive Normalization; 1.3 LN Cascade; 2 Cortical Filter Models Across Visual Cues; 2.1 Color Processing; 2.2 Binocular Disparity Processing; 2.3 Motion Processing; 3 Completing the Hierarchy: Models of the Visual Cortex; 3.1 Hubel and Wiesel Model; 3.2 Hierarchical Models: Formalism; 3.3 Models of Object Recognition; 3.4 Models Across Visual Cues; 4 Discussion and Concluding Remarks; 4.1 Why Hierarchies?; 4.2 Limitations; References; Invariant Recognition Predicts Tuning of Neurons in Sensory Cortex
  • 1 Appendix1.1 Retinal Processing; 1.2 Additional Evidence for Gabor Shapes as Templates in V1; 1.3 Hebbian Rule and Gabor-Like Functions; 1.4 Motion Determines a Consistent Orientation of the Gabor-Like Eigenfunctions; 1.5 Phase of Gabor RFs; References; Speed Versus Accuracy in Visual Search: Optimal Performance and Neural Implementations; 1 The Phenomenology of Visual Search; 2 Ideal Observers; 2.1 Sensory Input; 2.2 Optimality; 3 The Sequential Probability Ratio Test; 3.1 Notations; 3.2 S(Xt) for Homogeneous Discrimination; 3.3 S(Xt) for Homogeneous Search
  • 3.4 S(Xt) for Heterogeneous Search4 Model Prediction and Human Psychophysics; 4.1 Qualitative Fits; 4.2 Quantitative Fits; 5 Optimality Analysis; 5.1 Solving for the Ideal Observer; 5.2 Dynamic Programming; 5.3 Comparison with SPRT; 6 Spiking Network Implementation; 7 Chapter Summary; References; 7 The Pupil as Marker of Cognitive Processes; 1 The Pupil Is a Readily Accessible Marker of Neural Processes; 2 Modulation of the Pupil's Response to Light by Cognitive Factors; 2.1 Awareness and Imaginary Light Sources Modulate the Pupil Light Reflex
Dimensions
unknown
Extent
1 online resource (316 pages).
File format
unknown
Form of item
online
Isbn
9789811002137
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • ocn960166168
  • (OCoLC)960166168

Library Locations

Processing Feedback ...