Coverart for item
The Resource Embracing interference in wireless systems, Shyamnath Gollakota, (electronic book)

Embracing interference in wireless systems, Shyamnath Gollakota, (electronic book)

Label
Embracing interference in wireless systems
Title
Embracing interference in wireless systems
Statement of responsibility
Shyamnath Gollakota
Creator
Subject
Language
eng
Summary
The wireless medium is a shared resource. If nearby devices transmit at the same time, their signals interfere, resulting in a collision. In traditional networks, collisions cause the loss of the transmitted information. For this reason, wireless networks have been designed with the assumption that interference is intrinsically harmful and must be avoided. This book takes an alternate approach: instead of viewing interference as an inherently counterproductive phenomenon that should to be avoided, we design practical systems that transform interference into a harmless, and even beneficial, phenomenon
Member of
Cataloging source
CN3GA
http://library.link/vocab/creatorName
Gollakota, Shyamnath
Dewey number
621.382/24
Illustrations
illustrations
Index
no index present
LC call number
TK7867.2
LC item number
.G65 2014
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
ACM Books
Series volume
1
http://library.link/vocab/subjectName
  • Electromagnetic interference
  • Wireless communication systems
  • Coding theory
  • Data transmission systems
  • Packet switching (Data transmission)
Label
Embracing interference in wireless systems, Shyamnath Gollakota, (electronic book)
Instantiates
Publication
Note
5.6.1 Evaluating TEP's Security
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1. Introduction -- 1.1 Embracing wireless interference -- 1.1.1 Decoding 802.11 collisions -- 1.1.2 Combating high-power cross-technology interference -- 1.1.3 Non-invasive approach to securing medical implants -- 1.1.4 Secure pairing without passwords or prior secrets -- 1.2 Organization
  • 2. Decoding 802.11 collisions -- 2.1 Related work -- 2.2 Scope -- 2.3 A communication primer -- 2.3.1 Practical issues -- 2.4 ZigZag decoding -- 2.4.1 Is it a collision? -- 2.4.2 Did the AP receive two matching collisions? -- 2.4.3 How does the AP decode matching collisions? -- 2.4.4 Estimating and tracking system parameters -- 2.5 Dealing with errors -- 2.6 Backward compatibility -- 2.7 Beyond two interferers -- 2.8 Complexity -- 2.9 Experimental environment -- 2.9.1 Setup -- 2.9.2 Micro-evaluation -- 2.9.3 Does ZigZag work -- 2.9.4 The impact of the SNR -- 2.9.5 Testbed throughput and loss rate -- 2.9.6 Many hidden terminals -- 2.10 Discussion
  • 3. Combating high-power cross-technology interference -- 3.1 Impact of cross-technology interference on 802.11n -- 3.1.1 Digital cordless phone -- 3.1.2 Baby monitor -- 3.1.3 Microwave ovens -- 3.1.4 Frequency hopping bluetooth -- 3.1.5 Summary -- 3.2 MIMO and OFDM background -- 3.3 Problem domain -- 3.4 TIMO -- 3.5 Decoding in the presence of cross-technology interference -- 3.5.1 Computing the interferer's channel ratio -- 3.5.2 Decoding the signal of interest -- 3.5.3 Iterating to increase accuracy -- 3.5.4 Estimating the 802.11n channel functions -- 3.5.5 Finding the interference boundaries -- 3.5.6 Putting it together -- 3.5.7 Complexity -- 3.6 Ensuring the interferer can decode -- 3.7 Implementation -- 3.8 Performance evaluation -- 3.8.1 Cordless phone -- 3.8.2 Baby monitor -- 3.8.3 Microwave oven -- 3.8.4 Multiple interferers -- 3.9 Micro benchmarks -- 3.10 Related work -- 3.11 Discussion
  • 4. Non-invasive approach to securing medical implants -- 4.1 IMD communication primer -- 4.2 Assumptions and threat model -- 4.2.1 Assumptions -- 4.2.2 Threat model -- 4.3 System overview -- 4.4 Jammer-cum-receiver -- 4.5 Protecting against passive eavesdroppers -- 4.6 Protecting against active adversaries -- 4.7 Implementation -- 4.8 Testing environment -- 4.9 Evaluation -- 4.9.1 Micro-benchmark results -- 4.9.2 Protecting from passive adversaries -- 4.9.3 Protecting from active adversaries -- 4.10 Coexistence -- 4.11 Related work -- 4.12 Discussion
  • 5. Secure pairing without passwords or prior secrets -- 5.1 Related work -- 5.2 PBC and 802.11 background -- 5.2.1 Push button configuration -- 5.2.2 802.11 -- 5.3 Security model -- 5.3.1 Threat model -- 5.3.2 Security guarantees -- 5.4 TEP design -- 5.4.1 Tamper-evident message (TEM) -- 5.4.2 Securing PBC using TEM -- 5.4.3 Example scenarios -- 5.4.4 Making pairing faster -- 5.5 TEM on off-the-shelf hardware -- 5.5.1 Scheduling slot transmission -- 5.5.2 Energy detection at the receiver -- 5.5.3 Sending a synchronization packet -- 5.5.4 Checking for TEM while transmitting -- 5.6 Evaluation -- 5.6.1 Evaluating TEP's security -- 5.6.2 Evaluating TEP's accuracy -- 5.6.3 Evaluating TEP's performance -- 5.6.4 Performance with non-802.11 traffic -- 5.7 Discussion
  • 6. Conclusion -- 6.1 Looking forward -- Bibliography -- Author's biography
Dimensions
unknown
Edition
First edition.
Extent
1 online resource.
Form of item
online
Isbn
9781627054768
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1145/2611390
Specific material designation
remote
System control number
ocn898199908
Label
Embracing interference in wireless systems, Shyamnath Gollakota, (electronic book)
Publication
Note
5.6.1 Evaluating TEP's Security
Bibliography note
Includes bibliographical references
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1. Introduction -- 1.1 Embracing wireless interference -- 1.1.1 Decoding 802.11 collisions -- 1.1.2 Combating high-power cross-technology interference -- 1.1.3 Non-invasive approach to securing medical implants -- 1.1.4 Secure pairing without passwords or prior secrets -- 1.2 Organization
  • 2. Decoding 802.11 collisions -- 2.1 Related work -- 2.2 Scope -- 2.3 A communication primer -- 2.3.1 Practical issues -- 2.4 ZigZag decoding -- 2.4.1 Is it a collision? -- 2.4.2 Did the AP receive two matching collisions? -- 2.4.3 How does the AP decode matching collisions? -- 2.4.4 Estimating and tracking system parameters -- 2.5 Dealing with errors -- 2.6 Backward compatibility -- 2.7 Beyond two interferers -- 2.8 Complexity -- 2.9 Experimental environment -- 2.9.1 Setup -- 2.9.2 Micro-evaluation -- 2.9.3 Does ZigZag work -- 2.9.4 The impact of the SNR -- 2.9.5 Testbed throughput and loss rate -- 2.9.6 Many hidden terminals -- 2.10 Discussion
  • 3. Combating high-power cross-technology interference -- 3.1 Impact of cross-technology interference on 802.11n -- 3.1.1 Digital cordless phone -- 3.1.2 Baby monitor -- 3.1.3 Microwave ovens -- 3.1.4 Frequency hopping bluetooth -- 3.1.5 Summary -- 3.2 MIMO and OFDM background -- 3.3 Problem domain -- 3.4 TIMO -- 3.5 Decoding in the presence of cross-technology interference -- 3.5.1 Computing the interferer's channel ratio -- 3.5.2 Decoding the signal of interest -- 3.5.3 Iterating to increase accuracy -- 3.5.4 Estimating the 802.11n channel functions -- 3.5.5 Finding the interference boundaries -- 3.5.6 Putting it together -- 3.5.7 Complexity -- 3.6 Ensuring the interferer can decode -- 3.7 Implementation -- 3.8 Performance evaluation -- 3.8.1 Cordless phone -- 3.8.2 Baby monitor -- 3.8.3 Microwave oven -- 3.8.4 Multiple interferers -- 3.9 Micro benchmarks -- 3.10 Related work -- 3.11 Discussion
  • 4. Non-invasive approach to securing medical implants -- 4.1 IMD communication primer -- 4.2 Assumptions and threat model -- 4.2.1 Assumptions -- 4.2.2 Threat model -- 4.3 System overview -- 4.4 Jammer-cum-receiver -- 4.5 Protecting against passive eavesdroppers -- 4.6 Protecting against active adversaries -- 4.7 Implementation -- 4.8 Testing environment -- 4.9 Evaluation -- 4.9.1 Micro-benchmark results -- 4.9.2 Protecting from passive adversaries -- 4.9.3 Protecting from active adversaries -- 4.10 Coexistence -- 4.11 Related work -- 4.12 Discussion
  • 5. Secure pairing without passwords or prior secrets -- 5.1 Related work -- 5.2 PBC and 802.11 background -- 5.2.1 Push button configuration -- 5.2.2 802.11 -- 5.3 Security model -- 5.3.1 Threat model -- 5.3.2 Security guarantees -- 5.4 TEP design -- 5.4.1 Tamper-evident message (TEM) -- 5.4.2 Securing PBC using TEM -- 5.4.3 Example scenarios -- 5.4.4 Making pairing faster -- 5.5 TEM on off-the-shelf hardware -- 5.5.1 Scheduling slot transmission -- 5.5.2 Energy detection at the receiver -- 5.5.3 Sending a synchronization packet -- 5.5.4 Checking for TEM while transmitting -- 5.6 Evaluation -- 5.6.1 Evaluating TEP's security -- 5.6.2 Evaluating TEP's accuracy -- 5.6.3 Evaluating TEP's performance -- 5.6.4 Performance with non-802.11 traffic -- 5.7 Discussion
  • 6. Conclusion -- 6.1 Looking forward -- Bibliography -- Author's biography
Dimensions
unknown
Edition
First edition.
Extent
1 online resource.
Form of item
online
Isbn
9781627054768
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Other control number
10.1145/2611390
Specific material designation
remote
System control number
ocn898199908

Library Locations

Processing Feedback ...