Coverart for item
The Resource Fundamental optical design, Michael J. Kidger, (electronic book)

Fundamental optical design, Michael J. Kidger, (electronic book)

Label
Fundamental optical design
Title
Fundamental optical design
Statement of responsibility
Michael J. Kidger
Creator
Contributor
Subject
Language
eng
Summary
This book provides all the essential and best elements of Kidger's many courses taught worldwide on lens and optical design. It is written in a direct style that is compact, logical, and to the point--a tutorial in the best sense of the word. "I read my copy late last year and read it straight through, cover to cover. In fact, I read it no less than three times. Its elegant expositions, valuable insights, and up-front espousal of pre-design theory make it an outstanding work. It's in the same league with Conrady and Kingslake." Warren Smith
Member of
Additional physical form
Also available in print version.
Cataloging source
CaBNvSL
http://library.link/vocab/creatorName
Kidger, Michael J.
Dewey number
535/.32
Illustrations
illustrations
Index
index present
LC call number
QC381
LC item number
.K53 2002e
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Society of Photo-optical Instrumentation Engineers
Series statement
SPIE Press monograph
Series volume
92
http://library.link/vocab/subjectName
Geometrical optics
Target audience
  • adult
  • specialized
Label
Fundamental optical design, Michael J. Kidger, (electronic book)
Instantiates
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Chapter 1. Geometrical optics -- Coordinate system and notation -- The rectilinear propagation of light -- Snell's law -- Fermat's principle -- Rays and wavefronts, the theorem of Malus and Dupin -- Stops and pupils -- Marginal and chief rays -- Entrance and exit pupils -- Field stops -- Surfaces -- Spheres -- Quadrics of revolution (paraboloids, ellipsoids, hyperboloids) -- Oblate ellipsoid -- The hyperbola -- Axicon -- References -- Chapter 2. Paraxial optics -- Paraxial rays -- The sign convention -- The paraxial region -- The cardinal points -- Principal points -- Nodal points -- Paraxial properties of a single surface -- Paraxial ray tracing -- Discussion of the use of paraxial ray trace equations -- The Lagrange invariant -- Transverse (lateral) magnification -- Afocal systems and angular magnification -- Newton's conjugate distance equation -- Further discussion of the cardinal points -- The combination of two lenses -- The thick lens -- System of several elements -- The refraction invariant, A -- Other expressions for the Lagrange invariant -- The eccentricity, E -- The determination of E -- References -- Chapter 3. Ray tracing -- Introduction -- A simple trigonometric method of tracing meridian rays -- The vector form of Snell's law -- Definition of direction cosines -- Ray tracing (algebraic method) -- Precision -- Calculation of wavefront aberration (optical path difference) -- Ray tracing through aspheric and toroidal surfaces -- Decentered and tilted surfaces -- Ray tracing at reflecting surfaces -- References
  • Chapter 4. Aberrations -- The relationship between transverse and wavefront aberrations -- Ray aberration plots -- Spot diagrams -- Aberrations of centered optical systems -- First-order aberrations -- Defocus -- Lateral image shift -- The five monochromatic third-order (Seidel) aberrations -- Spherical aberration -- Coma -- Astigmatism and field curvature -- Distortion -- The finite conjugate case -- The infinite conjugate case -- The afocal case -- Effect of pupil aberrations and defocus on -- Distortion -- F-theta lenses -- Effect of a curved object on distortion -- Higher-order aberrations -- Balancing spherical aberration -- Balancing coma -- Balancing astigmatism and field curvature -- Balancing distortion -- Modulation transfer function (MTF) -- Theory -- The geometrical approximation -- Practical calculation -- The diffraction limit -- References -- Chapter 5. Chromatic aberration -- Variation of refractive index, dispersion -- Longitudinal chromatic aberration (axial color) of a thin lens -- The Abbe V-value -- Secondary spectrum -- Transverse chromatic aberration (lateral color) -- The Conrady method for calculation of chromatic aberration -- Chromatic variation of aberrations -- References
  • Chapter 6. Seidel aberrations -- Introduction -- Seidel surface contributions -- Spherical aberration -- Off-axis Seidel aberrations -- Alternative formula for distortion -- Aberrations of a plano-convex singlet -- First-order axial color and lateral color -- Summary of the Seidel surface coefficients -- A numerical example -- Stop-shift effects -- Derivation of the Seidel stop-shift equations -- Dependence of the Seidel aberrations on surface curvature -- The aplanatic surface -- An example: the classical oil-immersion microscope -- Objective -- Zero Seidel conditions -- "Undercorrected" and "overcorrected" aberrations -- Seidel aberrations of spherical mirrors -- Seidel aberration relationships -- Wavefront aberrations -- Transverse ray aberrations -- The Petzval sum and the Petzval surface -- The Petzval surface and astigmatic image surfaces -- Pupil aberrations -- Conjugate-shift effects -- References
  • Chapter 7. Principles of lens design -- Thin lenses -- Thin lens at the stop -- Spherical aberration -- Coma -- Astigmatism -- Field curvature -- Distortion -- Axial color -- Lateral color -- Discussion of the thin-lens Seidel aberrations -- Spherical aberration -- Bending for minimum spherical aberration -- Effect of refractive index -- Effect of change of conjugates -- Correction of spherical aberration with two positive -- Lenses -- Correction of spherical aberration with positive and -- Negative lenses -- Seidel aberrations of thin lenses not at the stop -- Correction of coma -- Correction of astigmatism -- Correction of field curvature -- Different refractive indices -- Separated lenses -- Thick meniscus lens -- Reduction of aberrations by splitting lenses into two -- Seidel aberrations of a thin lens that is not at the stop -- Correction of axial and lateral color -- Shape-dependent and shape-independent aberrations -- Aspheric surfaces -- Third-order off-axis aberrations of an aspheric plate -- Chromatic effects -- The sine condition -- Sine condition in the finite conjugate case -- The sine condition with the object at infinity -- The sine condition for the afocal case -- Other design strategies -- Monocentric systems -- Use of front-to-back symmetry -- References
  • Chapter 8. Achromatic doublet objectives -- Seidel analysis -- Correction of chromatic aberration -- Astigmatism and field curvature -- Comparison with the actual aberrations of a doublet -- Correcting both Petzval sum and axial color in doublets -- Possibilities of aberration correction in doublets -- The cemented doublet -- Optimization of cemented doublets -- Crown-first doublet -- Flint-first doublet -- The split doublet -- The split Fraunhofer doublet -- The split Gauss doublet -- General limitations of doublets -- Chapter 9. Petzval lenses and telephoto objectives -- Seidel analysis -- Calculation of predicted transverse aberrations from Seidel -- Coefficients -- Optimization -- Examples -- Simple Petzval lens with two doublets -- Petzval lens with curved image surface -- Petzval lens with field flattener -- The telephoto lens -- Chapter 10. Triplets -- Seidel theory -- Example of an optimized triplet -- Glass choice -- Vignetting
  • Chapter 11. Eyepieces and afocal systems -- Eyepieces, design considerations -- Specification of an eyepiece -- Focal length -- Field angle -- Pupil diameter -- Exit pupil position ("eye relief") -- Aberration considerations -- Prism aberrations -- Pupil spherical aberration -- Distortion -- Field curvature -- Special factors in optimization -- General comments on eyepieces -- Simple eyepiece types -- The Ramsden eyepiece -- The achromatized Ramsden, or Kellner, eyepiece -- The Ploessl eyepiece -- The Erfle eyepiece -- Afocal systems for the visible waveband -- Simple example of a complete telescopic system -- More complex example of a telescopic system -- Galilean telescopes -- Magnifiers -- References -- Chapter 12. Thermal imaging lenses -- Photon detection -- 8- to 13- um waveband -- 3- to 5- um waveband -- Single-material lenses -- Single germanium lens -- Germanium doublets -- Plus-minus germanium doublet solution -- Plus-plus germanium doublet solution -- Germanium Petzval lens -- Germanium triplet -- Multiple-material lenses -- Infrared afocal systems -- The objective -- The eyepiece -- Optimization and analysis -- Other aspects of thermal imaging -- Narcissus effect -- Thermal effects -- Special optical surfaces -- References
  • Chapter 13. Catadioptric systems -- General considerations -- Reminder of Seidel theory, spherical aberration, S1 -- Correction of field curvature, S4 -- General topics relating to computations with catadioptric systems -- Baffles -- Simple examples -- Cassegrain telescope -- Field corrector for a Cassegrain telescope -- Coma corrector for a paraboloidal mirror -- Field corrector for a paraboloidal mirror -- The Ritchey-Chrétien telescope -- Field corrector for a Ritchey-Chrétien telescope -- Field corrector for a hyperbolic mirror -- Schmidt camera -- The achromatized Schmidt camera -- The field-flattened Schmidt camera -- The Maksutov-Bouwers Cassegrain system -- A simple Mangin mirror system by Wiedemann -- More complex examples -- Canzek Mangin system -- Mirror telephoto lens -- References -- Index
Dimensions
unknown
Extent
1 online resource (xix, 290 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819478504
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader
Label
Fundamental optical design, Michael J. Kidger, (electronic book)
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Chapter 1. Geometrical optics -- Coordinate system and notation -- The rectilinear propagation of light -- Snell's law -- Fermat's principle -- Rays and wavefronts, the theorem of Malus and Dupin -- Stops and pupils -- Marginal and chief rays -- Entrance and exit pupils -- Field stops -- Surfaces -- Spheres -- Quadrics of revolution (paraboloids, ellipsoids, hyperboloids) -- Oblate ellipsoid -- The hyperbola -- Axicon -- References -- Chapter 2. Paraxial optics -- Paraxial rays -- The sign convention -- The paraxial region -- The cardinal points -- Principal points -- Nodal points -- Paraxial properties of a single surface -- Paraxial ray tracing -- Discussion of the use of paraxial ray trace equations -- The Lagrange invariant -- Transverse (lateral) magnification -- Afocal systems and angular magnification -- Newton's conjugate distance equation -- Further discussion of the cardinal points -- The combination of two lenses -- The thick lens -- System of several elements -- The refraction invariant, A -- Other expressions for the Lagrange invariant -- The eccentricity, E -- The determination of E -- References -- Chapter 3. Ray tracing -- Introduction -- A simple trigonometric method of tracing meridian rays -- The vector form of Snell's law -- Definition of direction cosines -- Ray tracing (algebraic method) -- Precision -- Calculation of wavefront aberration (optical path difference) -- Ray tracing through aspheric and toroidal surfaces -- Decentered and tilted surfaces -- Ray tracing at reflecting surfaces -- References
  • Chapter 4. Aberrations -- The relationship between transverse and wavefront aberrations -- Ray aberration plots -- Spot diagrams -- Aberrations of centered optical systems -- First-order aberrations -- Defocus -- Lateral image shift -- The five monochromatic third-order (Seidel) aberrations -- Spherical aberration -- Coma -- Astigmatism and field curvature -- Distortion -- The finite conjugate case -- The infinite conjugate case -- The afocal case -- Effect of pupil aberrations and defocus on -- Distortion -- F-theta lenses -- Effect of a curved object on distortion -- Higher-order aberrations -- Balancing spherical aberration -- Balancing coma -- Balancing astigmatism and field curvature -- Balancing distortion -- Modulation transfer function (MTF) -- Theory -- The geometrical approximation -- Practical calculation -- The diffraction limit -- References -- Chapter 5. Chromatic aberration -- Variation of refractive index, dispersion -- Longitudinal chromatic aberration (axial color) of a thin lens -- The Abbe V-value -- Secondary spectrum -- Transverse chromatic aberration (lateral color) -- The Conrady method for calculation of chromatic aberration -- Chromatic variation of aberrations -- References
  • Chapter 6. Seidel aberrations -- Introduction -- Seidel surface contributions -- Spherical aberration -- Off-axis Seidel aberrations -- Alternative formula for distortion -- Aberrations of a plano-convex singlet -- First-order axial color and lateral color -- Summary of the Seidel surface coefficients -- A numerical example -- Stop-shift effects -- Derivation of the Seidel stop-shift equations -- Dependence of the Seidel aberrations on surface curvature -- The aplanatic surface -- An example: the classical oil-immersion microscope -- Objective -- Zero Seidel conditions -- "Undercorrected" and "overcorrected" aberrations -- Seidel aberrations of spherical mirrors -- Seidel aberration relationships -- Wavefront aberrations -- Transverse ray aberrations -- The Petzval sum and the Petzval surface -- The Petzval surface and astigmatic image surfaces -- Pupil aberrations -- Conjugate-shift effects -- References
  • Chapter 7. Principles of lens design -- Thin lenses -- Thin lens at the stop -- Spherical aberration -- Coma -- Astigmatism -- Field curvature -- Distortion -- Axial color -- Lateral color -- Discussion of the thin-lens Seidel aberrations -- Spherical aberration -- Bending for minimum spherical aberration -- Effect of refractive index -- Effect of change of conjugates -- Correction of spherical aberration with two positive -- Lenses -- Correction of spherical aberration with positive and -- Negative lenses -- Seidel aberrations of thin lenses not at the stop -- Correction of coma -- Correction of astigmatism -- Correction of field curvature -- Different refractive indices -- Separated lenses -- Thick meniscus lens -- Reduction of aberrations by splitting lenses into two -- Seidel aberrations of a thin lens that is not at the stop -- Correction of axial and lateral color -- Shape-dependent and shape-independent aberrations -- Aspheric surfaces -- Third-order off-axis aberrations of an aspheric plate -- Chromatic effects -- The sine condition -- Sine condition in the finite conjugate case -- The sine condition with the object at infinity -- The sine condition for the afocal case -- Other design strategies -- Monocentric systems -- Use of front-to-back symmetry -- References
  • Chapter 8. Achromatic doublet objectives -- Seidel analysis -- Correction of chromatic aberration -- Astigmatism and field curvature -- Comparison with the actual aberrations of a doublet -- Correcting both Petzval sum and axial color in doublets -- Possibilities of aberration correction in doublets -- The cemented doublet -- Optimization of cemented doublets -- Crown-first doublet -- Flint-first doublet -- The split doublet -- The split Fraunhofer doublet -- The split Gauss doublet -- General limitations of doublets -- Chapter 9. Petzval lenses and telephoto objectives -- Seidel analysis -- Calculation of predicted transverse aberrations from Seidel -- Coefficients -- Optimization -- Examples -- Simple Petzval lens with two doublets -- Petzval lens with curved image surface -- Petzval lens with field flattener -- The telephoto lens -- Chapter 10. Triplets -- Seidel theory -- Example of an optimized triplet -- Glass choice -- Vignetting
  • Chapter 11. Eyepieces and afocal systems -- Eyepieces, design considerations -- Specification of an eyepiece -- Focal length -- Field angle -- Pupil diameter -- Exit pupil position ("eye relief") -- Aberration considerations -- Prism aberrations -- Pupil spherical aberration -- Distortion -- Field curvature -- Special factors in optimization -- General comments on eyepieces -- Simple eyepiece types -- The Ramsden eyepiece -- The achromatized Ramsden, or Kellner, eyepiece -- The Ploessl eyepiece -- The Erfle eyepiece -- Afocal systems for the visible waveband -- Simple example of a complete telescopic system -- More complex example of a telescopic system -- Galilean telescopes -- Magnifiers -- References -- Chapter 12. Thermal imaging lenses -- Photon detection -- 8- to 13- um waveband -- 3- to 5- um waveband -- Single-material lenses -- Single germanium lens -- Germanium doublets -- Plus-minus germanium doublet solution -- Plus-plus germanium doublet solution -- Germanium Petzval lens -- Germanium triplet -- Multiple-material lenses -- Infrared afocal systems -- The objective -- The eyepiece -- Optimization and analysis -- Other aspects of thermal imaging -- Narcissus effect -- Thermal effects -- Special optical surfaces -- References
  • Chapter 13. Catadioptric systems -- General considerations -- Reminder of Seidel theory, spherical aberration, S1 -- Correction of field curvature, S4 -- General topics relating to computations with catadioptric systems -- Baffles -- Simple examples -- Cassegrain telescope -- Field corrector for a Cassegrain telescope -- Coma corrector for a paraboloidal mirror -- Field corrector for a paraboloidal mirror -- The Ritchey-Chrétien telescope -- Field corrector for a Ritchey-Chrétien telescope -- Field corrector for a hyperbolic mirror -- Schmidt camera -- The achromatized Schmidt camera -- The field-flattened Schmidt camera -- The Maksutov-Bouwers Cassegrain system -- A simple Mangin mirror system by Wiedemann -- More complex examples -- Canzek Mangin system -- Mirror telephoto lens -- References -- Index
Dimensions
unknown
Extent
1 online resource (xix, 290 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819478504
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader

Library Locations

Processing Feedback ...