The Resource Hankel norm approximation for infinite-dimensional systems, Amol Sasane
Hankel norm approximation for infinite-dimensional systems, Amol Sasane
Resource Information
The item Hankel norm approximation for infinite-dimensional systems, Amol Sasane represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Hankel norm approximation for infinite-dimensional systems, Amol Sasane represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- viii, 142 p.
- Contents
-
- 1.
- Introduction.
- p. 1
- 2.
- Classes of well-posed linear systems.
- p. 13
- 3.
- Compactness and nuclearity or Hankel operators.
- p. 63
- 4.
- Characterization of all solutions.
- p. 85
- 5.
- State space solutions.
- p. 101
- 6.
- non-exponentially stable case.
- p. 109
- 7.
- case of regular linear systems.
- p. 119
- 8.
- Coda.
- p. 127
- Bibliography.
- p. 131
- Index.
- p. 139
- Standard notation.
- p. 141
- Isbn
- 9783540433279
- Label
- Hankel norm approximation for infinite-dimensional systems
- Title
- Hankel norm approximation for infinite-dimensional systems
- Statement of responsibility
- Amol Sasane
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1976-
- http://library.link/vocab/creatorName
- Sasane, A.
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA329.6
- LC item number
- .S38 2002
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Lecture notes in control and information sciences
- Series volume
- 277.
- http://library.link/vocab/subjectName
-
- Hankel operators
- Automatic control
- Control theory
- Label
- Hankel norm approximation for infinite-dimensional systems, Amol Sasane
- Bibliography note
- Includes bibliographical references (p. [131]-137) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.
- Introduction.
- p. 1
- 2.
- Classes of well-posed linear systems.
- p. 13
- 3.
- Compactness and nuclearity or Hankel operators.
- p. 63
- 4.
- Characterization of all solutions.
- p. 85
- 5.
- State space solutions.
- p. 101
- 6.
- non-exponentially stable case.
- p. 109
- 7.
- case of regular linear systems.
- p. 119
- 8.
- Coda.
- p. 127
- Bibliography.
- p. 131
- Index.
- p. 139
- Standard notation.
- p. 141
- Control code
- ocm49326904
- Dimensions
- 24 cm.
- Extent
- viii, 142 p.
- Isbn
- 9783540433279
- Lccn
- 2002020922
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- ill., 1 port.
- Label
- Hankel norm approximation for infinite-dimensional systems, Amol Sasane
- Bibliography note
- Includes bibliographical references (p. [131]-137) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.
- Introduction.
- p. 1
- 2.
- Classes of well-posed linear systems.
- p. 13
- 3.
- Compactness and nuclearity or Hankel operators.
- p. 63
- 4.
- Characterization of all solutions.
- p. 85
- 5.
- State space solutions.
- p. 101
- 6.
- non-exponentially stable case.
- p. 109
- 7.
- case of regular linear systems.
- p. 119
- 8.
- Coda.
- p. 127
- Bibliography.
- p. 131
- Index.
- p. 139
- Standard notation.
- p. 141
- Control code
- ocm49326904
- Dimensions
- 24 cm.
- Extent
- viii, 142 p.
- Isbn
- 9783540433279
- Lccn
- 2002020922
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- ill., 1 port.
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Hankel-norm-approximation-for/27Q1dZHt9hI/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Hankel-norm-approximation-for/27Q1dZHt9hI/">Hankel norm approximation for infinite-dimensional systems, Amol Sasane</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Hankel norm approximation for infinite-dimensional systems, Amol Sasane
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Hankel-norm-approximation-for/27Q1dZHt9hI/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Hankel-norm-approximation-for/27Q1dZHt9hI/">Hankel norm approximation for infinite-dimensional systems, Amol Sasane</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>