The Resource Hilbert modules over operator algebras
Hilbert modules over operator algebras
Resource Information
The item Hilbert modules over operator algebras represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Hilbert modules over operator algebras represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- This memoir gives a general systematic analysis of the notions of "projectivity" and "injectivity" in the context of Hilbert modules over operator algebras. A Hilbert module over an operator algebra [italic capital]A is simply the Hilbert space of a (contractive) representation of [italic capital]A viewed as a module over [italic capital]A in the usual way. We introduce various notions of "projective" Hilbert modules and use them to investigate dilation and commutant lifting problems over certain infinite dimensional analogues of "incidence" algebras. We prove that commutant lifting holds for such an algebra if and only if the pattern indexing the algebra is a "tree" in the sense of computer directories
- Language
- eng
- Extent
- viii, 53
- Contents
-
- Introduction
- Definitions
- Basic theory
- Incidence algebras and generalizations
- Appendix
- Trees and trees
- Isbn
- 9780821803462
- Label
- Hilbert modules over operator algebras
- Title
- Hilbert modules over operator algebras
- Language
- eng
- Summary
- This memoir gives a general systematic analysis of the notions of "projectivity" and "injectivity" in the context of Hilbert modules over operator algebras. A Hilbert module over an operator algebra [italic capital]A is simply the Hilbert space of a (contractive) representation of [italic capital]A viewed as a module over [italic capital]A in the usual way. We introduce various notions of "projective" Hilbert modules and use them to investigate dilation and commutant lifting problems over certain infinite dimensional analogues of "incidence" algebras. We prove that commutant lifting holds for such an algebra if and only if the pattern indexing the algebra is a "tree" in the sense of computer directories
- Cataloging source
- UkLiU
- http://library.link/vocab/creatorName
- Muhly, Paul S
- Index
- no index present
- Literary form
- non fiction
- http://library.link/vocab/relatedWorkOrContributorDate
- 1952-
- http://library.link/vocab/relatedWorkOrContributorName
- Solel, Baruch
- Series statement
- Memoirs of the American Mathematical Society
- Series volume
- 559
- http://library.link/vocab/subjectName
-
- Hilbert modules
- Operator algebras
- Label
- Hilbert modules over operator algebras
- Bibliography note
- Includes bibliographical references (pages 52-53)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Introduction
- Definitions
- Basic theory
- Incidence algebras and generalizations
- Appendix
- Trees and trees
- Dimensions
- 26 cm.
- Extent
- viii, 53
- Isbn
- 9780821803462
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Label
- Hilbert modules over operator algebras
- Bibliography note
- Includes bibliographical references (pages 52-53)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Introduction
- Definitions
- Basic theory
- Incidence algebras and generalizations
- Appendix
- Trees and trees
- Dimensions
- 26 cm.
- Extent
- viii, 53
- Isbn
- 9780821803462
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Hilbert-modules-over-operator-algebras/xwpARQoSUgA/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Hilbert-modules-over-operator-algebras/xwpARQoSUgA/">Hilbert modules over operator algebras</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Hilbert modules over operator algebras
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Hilbert-modules-over-operator-algebras/xwpARQoSUgA/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Hilbert-modules-over-operator-algebras/xwpARQoSUgA/">Hilbert modules over operator algebras</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>