Coverart for item
The Resource Infrared optics and zoom lenses, Allen Mann, (electronic book)

Infrared optics and zoom lenses, Allen Mann, (electronic book)

Label
Infrared optics and zoom lenses
Title
Infrared optics and zoom lenses
Statement of responsibility
Allen Mann
Creator
Contributor
Subject
Language
eng
Summary
Ten years after the publication of Infrared Optics and Zoom Lenses, this text is still the only current publication devoted exclusively to infrared zoom lenses. This updated second edition includes 18 new refractive and reflective infrared zoom systems, bringing the total number of infrared zoom optical systems to 41 systems. Other additions include a section on focal plane arrays and a new closing chapter specifically devoted to applications of infrared zoom lenses. Coverage of wavelength region has been expanded to include the near infrared. Additional topics include an examination of the importance of principal planes, methods for athermalization by means of computer glass substitution, and global optimization techniques for zoom lens design
Member of
Additional physical form
Also available in print version.
Cataloging source
CaBNvSL
http://library.link/vocab/creatorDate
1929-
http://library.link/vocab/creatorName
Mann, Allen
Dewey number
621.36/2
Illustrations
illustrations
Index
index present
LC call number
TA1570
LC item number
.M34 2009
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Society of Photo-optical Instrumentation Engineers
Series statement
Tutorial texts in optical engineering
Series volume
TT83
http://library.link/vocab/subjectName
  • Infrared equipment
  • Zoom lenses
Target audience
adult
Label
Infrared optics and zoom lenses, Allen Mann, (electronic book)
Instantiates
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Preface -- 1. System considerations -- 1.1. Radiometry. 1.1.1. Blackbody radiation; 1.1.2. Planck's equation; 1.1.3. Stefan-Boltzmann law; 1.1.4. Wien displacement law -- 1.2. Atmospheric transmission. 1.2.1. Scattering; 1.2.2. Absorption; 1.2.3. Infrared windows; 1.2.4. Computer calculation -- 1.3. Lens transmission; 1.3.1. Transmittance; 1.3.2. Reflectance -- 1.4. Coatings. 1.4.1. Single-layer coatings; 1.4.2. Multilayer coatings -- 1.5. Infrared detectors. 1.5.1. Basic relations; 1.5.2. Types; 1.5.3. Arrays; 1.5.4. Matching the detector with the optics -- 1.6. References -- 2. Optics fundamentals -- 2.1. Lens equation -- 2.2. Stops and pupils -- 2.3. Optical formulas -- 2.4. Optical performance criteria -- 2.5. Telescopes -- 2.6. Primary aberrations. 2.6.1. Definition of the Seidel aberrations; 2.6.2. Variation of primary aberrations with aperture and field height; 2.6.3. Stop shift equations -- 2.7. Achromatism. 2.7.1. Primary achromatism; 2.7.2. Secondary spectrum -- 2.8. Principal planes -- 2.9. Problems -- 2.10. References
  • 3. Unique features of the infrared region -- 3.1. Optical materials.3.1.1. Materials for the infrared; 3.1.2. Calculation of index of refraction -- 3.2. Thermal Compensation. 3.2.1. Focus shift with temperature; 3.2.2. Athermalization; 3.2.3. Athermalization methods -- 3.3. Cold stop and cold shield -- 3.4. Narcissus. 3.4.1. Types of retroreflections; 3.4.2. Reduction techniques -- 3.5. Glass substitution -- 3.6. References -- 4. Optical design techniques -- 4.1. Optical design starting point -- 4.2. Scaling -- 4.3. Optical materials selection -- 4.4. Techniques for compactness -- 4.5. Symmetry principle -- 4.6. Bending -- 4.7. Aplanatic condition -- 4.8. Adding an element -- 4.9. Field lens utilization -- 4.10. Conics and aspheres -- 4.11. Diffractive surfaces -- 4.12. Aperture stop location -- 4.13. Computer optimization -- 4.14. Global search -- 4.15. Tolerances -- 4.16. References -- 5. Zoom Lenses -- 5.1. Types of zoom lenses. 5.1.1. Optically compensated zoom lens; 5.1.2. Mechanically compensated zoom lens -- 5.2. Infrared zoom lens specifications. 5.2.1. Spectral region; 5.2.2. Optical system performance; 5.2.3. Aperture; 5.2.4. Effective focal length; 5.2.5. Magnification range; 5.2.6. Size constraints; 5.2.7. Operating environment; 5.2.8. Distortion; 5.2.9. Transmission; 5.2.10. Narcissus; 5.2.11. Vignetting -- 5.3. Extenders -- 5.4. References
  • 6. Refractive infrared zoom lenses -- 6.1. Target simulators. 6.1.1. CI Systems; 6.1.2. Hughes Aircraft Company; 6.1.3. Lockheed Martin; 6.1.4. Optics 1 -- 6.2. Scanning systems. 6.2.1. Barr & Stroud; 6.2.2. Pilkington P.E.; 6.2.3. Optics 1; 6.2.4. Precision-Optical Engineering; 6.2.5. Zhejiang University, Department of Optical Engineering; 6.2.6. Electrooptical Industries, Ltd.; 6.2.7. Scotoptix; 6.2.8. Optimum Optical Systems; 6.2.9. Royal Institute of Technology; 6.2.10. Fuji Photo Optical Company; 6.2.11. Carl Zeiss -- 6.3. Charge-coupled device imaging systems. 6.3.1. Angenieux; 6.3.2. University of Alabama, Huntsville; 6.3.3. National First University of Science and Technology; 6.3.4. Industrial Technology Research Institute -- 6.4. Laser beam expanders. 6.4.1. Carl Zeiss; 6.4.2. University of Twente -- 6.5. Diffractive optics. 6.5.1. Optics 1; 6.5.2. Optical E.T.C., Inc. and Teledyne Brown; 6.5.3. Wescam; 6.5.4. Texas Instruments; 6.5.5. Raytheon; 6.5.6. Raytheon -- 6.6. Focal plane arrays.6.6.1. Agency for Defence Development; 6.6.2. Royal Institute of Technology; 6.6.3. Royal Institute of Technology -- 6.7. References
  • 7. Reflective infrared zoom systems -- 7.1. Obscured systems. 7.1.1. Korea Advanced Institute of Science and Technology; 7.1.2. Center for Applied Optics, University of Alabama, Huntsville -- 7.2. Unobscured systems. 7.2.1. Hughes Aircraft Company; 7.2.2. Optical E.T.C., Inc.; 7.2.3. Beijing Institute of Technology; 7.2.4. Contraves Brashear -- 7.3. Special systems. 7.3.1. Lockheed Martin; 7.3.2. Industrial Research, Ltd.; 7.3.3. Optical Research Associates -- 7.4. References -- 8. Future trends -- 8.1. Athermalization -- 8.2. Diffractive optical elements -- 8.3. Conics and aspherics -- 8.4. Materials -- 8.5. Detector technology -- 8.6. Simulators -- 8.7. Mirror systems -- 8.8. Wavelength region -- 8.9. Optomechanical considerations -- 8.10. Computer optimization -- 8.11. References -- 9. Summary of applications -- 9.1. Scene projection and simulation -- 9.2. Wide and narrow field of view scanning telescopes for target search and recognition -- 9.3. WFOV and NFOV FPA or CCD surveillance, tracking, and target recognition -- 9.4. Battlefield detection of enemy soldiers and armaments -- 9.5. Search and rescue operations -- 9.6. Mineral resource surveys and forest fire detection -- 9.7. Laser scanning systems -- 9.8. Cutting sheet metal with high-power lasers -- 9.9. Observation of solar regions -- 9.10. Camera cell phones -- Appendix A. Miscellaneous patents -- Appendix B. Computer analysis of selected patents -- Appendix C. Answers to problems from Chapter 2 -- Index
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (xiii, 164 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819480927
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader
Label
Infrared optics and zoom lenses, Allen Mann, (electronic book)
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Preface -- 1. System considerations -- 1.1. Radiometry. 1.1.1. Blackbody radiation; 1.1.2. Planck's equation; 1.1.3. Stefan-Boltzmann law; 1.1.4. Wien displacement law -- 1.2. Atmospheric transmission. 1.2.1. Scattering; 1.2.2. Absorption; 1.2.3. Infrared windows; 1.2.4. Computer calculation -- 1.3. Lens transmission; 1.3.1. Transmittance; 1.3.2. Reflectance -- 1.4. Coatings. 1.4.1. Single-layer coatings; 1.4.2. Multilayer coatings -- 1.5. Infrared detectors. 1.5.1. Basic relations; 1.5.2. Types; 1.5.3. Arrays; 1.5.4. Matching the detector with the optics -- 1.6. References -- 2. Optics fundamentals -- 2.1. Lens equation -- 2.2. Stops and pupils -- 2.3. Optical formulas -- 2.4. Optical performance criteria -- 2.5. Telescopes -- 2.6. Primary aberrations. 2.6.1. Definition of the Seidel aberrations; 2.6.2. Variation of primary aberrations with aperture and field height; 2.6.3. Stop shift equations -- 2.7. Achromatism. 2.7.1. Primary achromatism; 2.7.2. Secondary spectrum -- 2.8. Principal planes -- 2.9. Problems -- 2.10. References
  • 3. Unique features of the infrared region -- 3.1. Optical materials.3.1.1. Materials for the infrared; 3.1.2. Calculation of index of refraction -- 3.2. Thermal Compensation. 3.2.1. Focus shift with temperature; 3.2.2. Athermalization; 3.2.3. Athermalization methods -- 3.3. Cold stop and cold shield -- 3.4. Narcissus. 3.4.1. Types of retroreflections; 3.4.2. Reduction techniques -- 3.5. Glass substitution -- 3.6. References -- 4. Optical design techniques -- 4.1. Optical design starting point -- 4.2. Scaling -- 4.3. Optical materials selection -- 4.4. Techniques for compactness -- 4.5. Symmetry principle -- 4.6. Bending -- 4.7. Aplanatic condition -- 4.8. Adding an element -- 4.9. Field lens utilization -- 4.10. Conics and aspheres -- 4.11. Diffractive surfaces -- 4.12. Aperture stop location -- 4.13. Computer optimization -- 4.14. Global search -- 4.15. Tolerances -- 4.16. References -- 5. Zoom Lenses -- 5.1. Types of zoom lenses. 5.1.1. Optically compensated zoom lens; 5.1.2. Mechanically compensated zoom lens -- 5.2. Infrared zoom lens specifications. 5.2.1. Spectral region; 5.2.2. Optical system performance; 5.2.3. Aperture; 5.2.4. Effective focal length; 5.2.5. Magnification range; 5.2.6. Size constraints; 5.2.7. Operating environment; 5.2.8. Distortion; 5.2.9. Transmission; 5.2.10. Narcissus; 5.2.11. Vignetting -- 5.3. Extenders -- 5.4. References
  • 6. Refractive infrared zoom lenses -- 6.1. Target simulators. 6.1.1. CI Systems; 6.1.2. Hughes Aircraft Company; 6.1.3. Lockheed Martin; 6.1.4. Optics 1 -- 6.2. Scanning systems. 6.2.1. Barr & Stroud; 6.2.2. Pilkington P.E.; 6.2.3. Optics 1; 6.2.4. Precision-Optical Engineering; 6.2.5. Zhejiang University, Department of Optical Engineering; 6.2.6. Electrooptical Industries, Ltd.; 6.2.7. Scotoptix; 6.2.8. Optimum Optical Systems; 6.2.9. Royal Institute of Technology; 6.2.10. Fuji Photo Optical Company; 6.2.11. Carl Zeiss -- 6.3. Charge-coupled device imaging systems. 6.3.1. Angenieux; 6.3.2. University of Alabama, Huntsville; 6.3.3. National First University of Science and Technology; 6.3.4. Industrial Technology Research Institute -- 6.4. Laser beam expanders. 6.4.1. Carl Zeiss; 6.4.2. University of Twente -- 6.5. Diffractive optics. 6.5.1. Optics 1; 6.5.2. Optical E.T.C., Inc. and Teledyne Brown; 6.5.3. Wescam; 6.5.4. Texas Instruments; 6.5.5. Raytheon; 6.5.6. Raytheon -- 6.6. Focal plane arrays.6.6.1. Agency for Defence Development; 6.6.2. Royal Institute of Technology; 6.6.3. Royal Institute of Technology -- 6.7. References
  • 7. Reflective infrared zoom systems -- 7.1. Obscured systems. 7.1.1. Korea Advanced Institute of Science and Technology; 7.1.2. Center for Applied Optics, University of Alabama, Huntsville -- 7.2. Unobscured systems. 7.2.1. Hughes Aircraft Company; 7.2.2. Optical E.T.C., Inc.; 7.2.3. Beijing Institute of Technology; 7.2.4. Contraves Brashear -- 7.3. Special systems. 7.3.1. Lockheed Martin; 7.3.2. Industrial Research, Ltd.; 7.3.3. Optical Research Associates -- 7.4. References -- 8. Future trends -- 8.1. Athermalization -- 8.2. Diffractive optical elements -- 8.3. Conics and aspherics -- 8.4. Materials -- 8.5. Detector technology -- 8.6. Simulators -- 8.7. Mirror systems -- 8.8. Wavelength region -- 8.9. Optomechanical considerations -- 8.10. Computer optimization -- 8.11. References -- 9. Summary of applications -- 9.1. Scene projection and simulation -- 9.2. Wide and narrow field of view scanning telescopes for target search and recognition -- 9.3. WFOV and NFOV FPA or CCD surveillance, tracking, and target recognition -- 9.4. Battlefield detection of enemy soldiers and armaments -- 9.5. Search and rescue operations -- 9.6. Mineral resource surveys and forest fire detection -- 9.7. Laser scanning systems -- 9.8. Cutting sheet metal with high-power lasers -- 9.9. Observation of solar regions -- 9.10. Camera cell phones -- Appendix A. Miscellaneous patents -- Appendix B. Computer analysis of selected patents -- Appendix C. Answers to problems from Chapter 2 -- Index
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (xiii, 164 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819480927
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader

Library Locations

Processing Feedback ...