The Resource Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu
Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu
Resource Information
The item Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.
This item is available to borrow from 1 library branch.
- Language
- eng
- Extent
- 496 p.
- Contents
-
- Important Comment
- Steps in the Finite Element Method
- Discretize and Select Element Configuration
- Select Approximation Models or Functions
- Define Strain (Gradient)-Displacement (Unknown) and Stress-Strain (Constitutive) Relationships
- Derive Element Equations
- Energy Methods
- Stationary Value
- Potential Energy
- Method of Weighted Residuals
- Process of Discretization
- Element Equations
- Assemble Element Equations to Obtain Global or Assemblage Equations and Introduce Boundary Conditions
- Boundary Conditions
- Solve for the Primary Unknowns
- Solve for Derived or Secondary Quantities
- Interpretation of Results
- Introduction to Variational Calculus
- Definitions of Functions and Functionals
- Variations of Functions
- Stationary Values of Functions and Functionals
- Subdivision
- [Delta]f[subscript x] to [Delta]f Conversion
- More on the Stationary Value of a Functional--Physical Interpretation
- Natural and Forced Boundary Conditions
- Two-Dimensional Problems
- One-Dimensional Stress Deformation
- Discretization and Choice of Element Configuration
- Explanation of Global and Local Coordinates
- Local and Global Coordinate System for the One-Dimensional Problem
- Select Approximation Model or Function for the Unknown (Displacement)
- Generalized Coordinates
- Continuity
- Interpolation Functions
- Relation between Local and Global Coordinates
- Variation of Element Properties
- Convergence
- Bounds
- Error
- Principles and Laws
- Cause and Effect
- Isbn
- 9780849302435
- Label
- Introductory finite element method
- Title
- Introductory finite element method
- Statement of responsibility
- Chandrakant S. Desai, Tribikram Kundu
- Language
- eng
- Cataloging source
- DLC
- http://library.link/vocab/creatorDate
- 1936-
- http://library.link/vocab/creatorName
- Desai, C. S.
- Index
- index present
- LC call number
- TA347.F5
- LC item number
- .D48 2001
- Literary form
- non fiction
- http://library.link/vocab/relatedWorkOrContributorName
- Kundu, T.
- http://library.link/vocab/subjectName
- Finite element method
- Label
- Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Important Comment
- Steps in the Finite Element Method
- Discretize and Select Element Configuration
- Select Approximation Models or Functions
- Define Strain (Gradient)-Displacement (Unknown) and Stress-Strain (Constitutive) Relationships
- Derive Element Equations
- Energy Methods
- Stationary Value
- Potential Energy
- Method of Weighted Residuals
- Process of Discretization
- Element Equations
- Assemble Element Equations to Obtain Global or Assemblage Equations and Introduce Boundary Conditions
- Boundary Conditions
- Solve for the Primary Unknowns
- Solve for Derived or Secondary Quantities
- Interpretation of Results
- Introduction to Variational Calculus
- Definitions of Functions and Functionals
- Variations of Functions
- Stationary Values of Functions and Functionals
- Subdivision
- [Delta]f[subscript x] to [Delta]f Conversion
- More on the Stationary Value of a Functional--Physical Interpretation
- Natural and Forced Boundary Conditions
- Two-Dimensional Problems
- One-Dimensional Stress Deformation
- Discretization and Choice of Element Configuration
- Explanation of Global and Local Coordinates
- Local and Global Coordinate System for the One-Dimensional Problem
- Select Approximation Model or Function for the Unknown (Displacement)
- Generalized Coordinates
- Continuity
- Interpolation Functions
- Relation between Local and Global Coordinates
- Variation of Element Properties
- Convergence
- Bounds
- Error
- Principles and Laws
- Cause and Effect
- Control code
- 982001017466
- Extent
- 496 p.
- Isbn
- 9780849302435
- Lccn
- 2001017466
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Label
- Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Important Comment
- Steps in the Finite Element Method
- Discretize and Select Element Configuration
- Select Approximation Models or Functions
- Define Strain (Gradient)-Displacement (Unknown) and Stress-Strain (Constitutive) Relationships
- Derive Element Equations
- Energy Methods
- Stationary Value
- Potential Energy
- Method of Weighted Residuals
- Process of Discretization
- Element Equations
- Assemble Element Equations to Obtain Global or Assemblage Equations and Introduce Boundary Conditions
- Boundary Conditions
- Solve for the Primary Unknowns
- Solve for Derived or Secondary Quantities
- Interpretation of Results
- Introduction to Variational Calculus
- Definitions of Functions and Functionals
- Variations of Functions
- Stationary Values of Functions and Functionals
- Subdivision
- [Delta]f[subscript x] to [Delta]f Conversion
- More on the Stationary Value of a Functional--Physical Interpretation
- Natural and Forced Boundary Conditions
- Two-Dimensional Problems
- One-Dimensional Stress Deformation
- Discretization and Choice of Element Configuration
- Explanation of Global and Local Coordinates
- Local and Global Coordinate System for the One-Dimensional Problem
- Select Approximation Model or Function for the Unknown (Displacement)
- Generalized Coordinates
- Continuity
- Interpolation Functions
- Relation between Local and Global Coordinates
- Variation of Element Properties
- Convergence
- Bounds
- Error
- Principles and Laws
- Cause and Effect
- Control code
- 982001017466
- Extent
- 496 p.
- Isbn
- 9780849302435
- Lccn
- 2001017466
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Introductory-finite-element-method-Chandrakant/bxLgl4jFbl8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Introductory-finite-element-method-Chandrakant/bxLgl4jFbl8/">Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Introductory-finite-element-method-Chandrakant/bxLgl4jFbl8/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Introductory-finite-element-method-Chandrakant/bxLgl4jFbl8/">Introductory finite element method, Chandrakant S. Desai, Tribikram Kundu</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>