Coverart for item
The Resource Laser beam propagation through random media, Larry C. Andrews, Ronald L. Phillips, (electronic book)

Laser beam propagation through random media, Larry C. Andrews, Ronald L. Phillips, (electronic book)

Label
Laser beam propagation through random media
Title
Laser beam propagation through random media
Statement of responsibility
Larry C. Andrews, Ronald L. Phillips
Creator
Contributor
Subject
Language
eng
Summary
Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems
Member of
Additional physical form
Also available in print version.
Cataloging source
CaBNvSL
http://library.link/vocab/creatorName
Andrews, Larry C.
Dewey number
621.36/6
Illustrations
illustrations
Index
index present
LC call number
QC976.L36
LC item number
A63 2005e
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1942-
http://library.link/vocab/relatedWorkOrContributorName
  • Phillips, Ronald L.
  • Society of Photo-optical Instrumentation Engineers
Series statement
SPIE Press monograph
Series volume
152
http://library.link/vocab/subjectName
  • Atmospheric turbulence
  • Laser beams
  • Laser beams
Target audience
  • adult
  • specialized
Label
Laser beam propagation through random media, Larry C. Andrews, Ronald L. Phillips, (electronic book)
Instantiates
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Part I. Basic theory. 1. Prologue -- 1.1. Introduction -- 1.2. Historical background of light -- 1.3. Optical wave models -- 1.4. Atmospheric effects -- 1.5. Application areas -- 1.6. A brief review of communication systems -- 1.7. Summary and overview of the book -- references
  • 2. Random processes and random fields -- 2.1. Introduction -- 2.2. Probabilistic description of random process -- 2.3. Ensemble averages -- 2.4. Time averages and ergodicity -- 2.5. Power spectral density functions -- 2.6. Random fields -- 2.7. Summary and discussion -- 2.8. Worked examples -- problems -- references
  • 3. Optical turbulence in the atmosphere -- 3.1. Introduction -- 3.2. Kolmogorov theory of turbulence -- 3.3. Power spectrum models for refractive-index fluctuations -- 3.4. Atmospheric temporal statistics -- 3.5. Summary and discussion -- 3.6. Worked examples -- problems -- references
  • 4. Free-space propagation of gaussian-beam waves -- 4.1. Introduction -- 4.2. Paraxial wave equation -- 4.3. Optical wave models -- 4.4. Diffractive properties of gaussian-beam waves -- 4.5. Geometrical interpretations, Part I -- 4.6. Geometrical interpretations, Part II -- 4.7. Higher-order gaussian-beam modes -- 4.8. Abcd ray-matrix representations -- 4.9. Single element optical system -- 4.10. Summary and discussion -- 4.11. Worked examples -- problems -- references
  • 5. Classical theory for propagation through random media -- 5.1. Introduction -- 5.2. Stochastic wave equation -- 5.3. Born approximation -- 5.4. Rytov approximation -- 5.5. Linear systems analogy -- 5.6. Rytov approximation for abcd optical systems -- 5.7. Classical distribution models -- 5.8. Other methods of analysis -- 5.9. Extended Rytov theory -- 5.10. Summary and discussion -- 5.11. Worked examples -- problems -- references
  • 6. Second-order statistics: weak fluctuation theory -- 6.1. Introduction -- 6.2. Basic concepts -- 6.3. Mutual coherence function -- 6.4. Spatial coherence radius -- 6.5. Angle-of-arrival fluctuations -- 6.6. Beam wander -- 6.7. Angular and temporal frequency spectra -- 6.8. Slant paths -- 6.9. Summary and discussion -- 6.10. Worked examples -- problems -- references
  • 7. Second-order statistics: strong fluctuation theory -- 7.1. Introduction -- 7.2. Parabolic equation method -- 7.3. Extended Huygens-Fresnel principle -- 7.4. Method of effective beam parameters -- 7.5. Summary and discussion -- 7.6. Worked examples -- problems -- references
  • 8. Fourth-order statistics: weak fluctuation theory -- 8.1. Introduction -- 8.2. Scintillation index -- 8.3. Beam wander and scintillation -- 8.4. Covariance function of irradiance -- 8.5. Temporal spectrum of irradiance -- 8.6. Phase fluctuations -- 8.7. Slant paths -- 8.8. Summary and discussion -- 8.9. Worked examples -- problems -- references
  • 9. Fourth-order statistics: strong fluctuation theory -- 9.1. Introduction -- 9.2. Modeling optical scintillation -- 9.3. Asymptotic theory -- 9.4. Scintillation theory: plane wave model -- 9.5. Scintillation theory: spherical wave model -- 9.6. Scintillation theory: gaussian-beam wave model -- 9.7. Covariance function of irradiance -- 9.8. Temporal spectrum of irradiance -- 9.9. Distribution models for the irradiance -- 9.10. Gamma-gamma distribution -- 9.11. Summary and discussion -- 9.12. Worked examples -- Problems -- References
  • 10. Propagation through complex paraxial ABCD optical systems -- 10.1. Introduction -- 10.2. Single element optical system -- 10.3. Aperture averaging -- 10.4. Optical systems with several optical elements -- 10.5. Summary and discussion -- 10.6. Worked examples -- Problems -- References
  • Part II. Applications. -- 11. Free-space optical communication systems -- 11.1. Introduction -- 11.2. Direct detection optical receivers -- 11.3. Fade statistics, Part i -- 11.4. Fade statistics, Part ii -- 11.5. Spatial diversity receivers -- 11.6. Summary and discussion -- 11.7. Worked examples -- Problems -- References
  • 12. Laser satellite communication systems -- 12.1. Introduction -- 12.2. Atmospheric channels -- 12.3. Background -- 12.4. Second-order statistics -- 12.5. Irradiance statistics: downlink channel -- 12.6. Irradiance statistics: uplink channel -- 12.7. Fade statistics: downlink channels -- 12.8. Fade statistics: uplink channels -- 12.9. Summary and discussion -- 12.10. Worked examples -- Problems -- References
  • 13. Double-passage problems: laser radar systems -- 13.1. Introduction -- 13.2. Laser radar configuration -- 13.3. Modeling the backscattered wave -- 13.4. Finite smooth target, pt. I -- 13.5. Finite smooth target, pt. II -- 13.6. Finite smooth reflector, pt. III -- 13.7. Unresolved (point) target -- 13.8. Diffuse target -- 13.9. Summary and discussion -- 13.10. Worked examples -- Problems -- References
  • 14. Imaging systems analysis -- 14.1. Introduction -- 14.2. Coherent imaging systems -- 14.3. Incoherent imaging systems -- 14.4. Laser imaging radar -- 14.5. Zernike polynomials -- 14.6. Summary and discussion -- 14.7. Worked examples -- Problems -- References
  • Part III. Related topics. -- 15. Propagation through random phase screens -- 15.1. Introduction -- 15.2. Random phase screen models -- 15.3. Mutual coherence function -- 15.4. Scintillation index and covariance function -- 15.5. Multiple phase screens -- 15.6. Summary and discussion -- Problems -- References
  • 16. Partially coherent beams -- 16.1. Introduction -- 16.2. Basic beam parameters -- 16.3. Mutual coherence function, pt. I -- 16.4. Mutual coherence function, pt. II -- 16.5. Scintillation index, pt. I -- 16.6. Scintillation index, pt. II -- 16.7. FSO communication systems -- 16.8. Ladar model in free space -- 16.9. Ladar model in optical turbulence -- 16.10. Summary and discussion -- 16.11. Worked examples -- Problems -- References
  • 17. Other beam shapes -- 17.1. Introduction -- 17.2. Beam spreading: higher-order gaussian beams -- 17.3. Annular beam -- 17.4. Other beams -- 17.5. Summary and discussion -- Problems -- References
  • 18. Pulse propagation -- 18.1. Introduction -- 18.2. Background -- 18.3. Two-frequency mutual coherence function -- 18.4. Four-frequency cross-coherence function -- 18.5. Summary and discussion -- Problems -- References
  • Appendix I. Special functions -- Appendix II. Integral table -- Appendix III. Tables of beam statistics -- Index
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (xxiii, 782 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819459480
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader
Label
Laser beam propagation through random media, Larry C. Andrews, Ronald L. Phillips, (electronic book)
Publication
Note
"SPIE digital library."
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Part I. Basic theory. 1. Prologue -- 1.1. Introduction -- 1.2. Historical background of light -- 1.3. Optical wave models -- 1.4. Atmospheric effects -- 1.5. Application areas -- 1.6. A brief review of communication systems -- 1.7. Summary and overview of the book -- references
  • 2. Random processes and random fields -- 2.1. Introduction -- 2.2. Probabilistic description of random process -- 2.3. Ensemble averages -- 2.4. Time averages and ergodicity -- 2.5. Power spectral density functions -- 2.6. Random fields -- 2.7. Summary and discussion -- 2.8. Worked examples -- problems -- references
  • 3. Optical turbulence in the atmosphere -- 3.1. Introduction -- 3.2. Kolmogorov theory of turbulence -- 3.3. Power spectrum models for refractive-index fluctuations -- 3.4. Atmospheric temporal statistics -- 3.5. Summary and discussion -- 3.6. Worked examples -- problems -- references
  • 4. Free-space propagation of gaussian-beam waves -- 4.1. Introduction -- 4.2. Paraxial wave equation -- 4.3. Optical wave models -- 4.4. Diffractive properties of gaussian-beam waves -- 4.5. Geometrical interpretations, Part I -- 4.6. Geometrical interpretations, Part II -- 4.7. Higher-order gaussian-beam modes -- 4.8. Abcd ray-matrix representations -- 4.9. Single element optical system -- 4.10. Summary and discussion -- 4.11. Worked examples -- problems -- references
  • 5. Classical theory for propagation through random media -- 5.1. Introduction -- 5.2. Stochastic wave equation -- 5.3. Born approximation -- 5.4. Rytov approximation -- 5.5. Linear systems analogy -- 5.6. Rytov approximation for abcd optical systems -- 5.7. Classical distribution models -- 5.8. Other methods of analysis -- 5.9. Extended Rytov theory -- 5.10. Summary and discussion -- 5.11. Worked examples -- problems -- references
  • 6. Second-order statistics: weak fluctuation theory -- 6.1. Introduction -- 6.2. Basic concepts -- 6.3. Mutual coherence function -- 6.4. Spatial coherence radius -- 6.5. Angle-of-arrival fluctuations -- 6.6. Beam wander -- 6.7. Angular and temporal frequency spectra -- 6.8. Slant paths -- 6.9. Summary and discussion -- 6.10. Worked examples -- problems -- references
  • 7. Second-order statistics: strong fluctuation theory -- 7.1. Introduction -- 7.2. Parabolic equation method -- 7.3. Extended Huygens-Fresnel principle -- 7.4. Method of effective beam parameters -- 7.5. Summary and discussion -- 7.6. Worked examples -- problems -- references
  • 8. Fourth-order statistics: weak fluctuation theory -- 8.1. Introduction -- 8.2. Scintillation index -- 8.3. Beam wander and scintillation -- 8.4. Covariance function of irradiance -- 8.5. Temporal spectrum of irradiance -- 8.6. Phase fluctuations -- 8.7. Slant paths -- 8.8. Summary and discussion -- 8.9. Worked examples -- problems -- references
  • 9. Fourth-order statistics: strong fluctuation theory -- 9.1. Introduction -- 9.2. Modeling optical scintillation -- 9.3. Asymptotic theory -- 9.4. Scintillation theory: plane wave model -- 9.5. Scintillation theory: spherical wave model -- 9.6. Scintillation theory: gaussian-beam wave model -- 9.7. Covariance function of irradiance -- 9.8. Temporal spectrum of irradiance -- 9.9. Distribution models for the irradiance -- 9.10. Gamma-gamma distribution -- 9.11. Summary and discussion -- 9.12. Worked examples -- Problems -- References
  • 10. Propagation through complex paraxial ABCD optical systems -- 10.1. Introduction -- 10.2. Single element optical system -- 10.3. Aperture averaging -- 10.4. Optical systems with several optical elements -- 10.5. Summary and discussion -- 10.6. Worked examples -- Problems -- References
  • Part II. Applications. -- 11. Free-space optical communication systems -- 11.1. Introduction -- 11.2. Direct detection optical receivers -- 11.3. Fade statistics, Part i -- 11.4. Fade statistics, Part ii -- 11.5. Spatial diversity receivers -- 11.6. Summary and discussion -- 11.7. Worked examples -- Problems -- References
  • 12. Laser satellite communication systems -- 12.1. Introduction -- 12.2. Atmospheric channels -- 12.3. Background -- 12.4. Second-order statistics -- 12.5. Irradiance statistics: downlink channel -- 12.6. Irradiance statistics: uplink channel -- 12.7. Fade statistics: downlink channels -- 12.8. Fade statistics: uplink channels -- 12.9. Summary and discussion -- 12.10. Worked examples -- Problems -- References
  • 13. Double-passage problems: laser radar systems -- 13.1. Introduction -- 13.2. Laser radar configuration -- 13.3. Modeling the backscattered wave -- 13.4. Finite smooth target, pt. I -- 13.5. Finite smooth target, pt. II -- 13.6. Finite smooth reflector, pt. III -- 13.7. Unresolved (point) target -- 13.8. Diffuse target -- 13.9. Summary and discussion -- 13.10. Worked examples -- Problems -- References
  • 14. Imaging systems analysis -- 14.1. Introduction -- 14.2. Coherent imaging systems -- 14.3. Incoherent imaging systems -- 14.4. Laser imaging radar -- 14.5. Zernike polynomials -- 14.6. Summary and discussion -- 14.7. Worked examples -- Problems -- References
  • Part III. Related topics. -- 15. Propagation through random phase screens -- 15.1. Introduction -- 15.2. Random phase screen models -- 15.3. Mutual coherence function -- 15.4. Scintillation index and covariance function -- 15.5. Multiple phase screens -- 15.6. Summary and discussion -- Problems -- References
  • 16. Partially coherent beams -- 16.1. Introduction -- 16.2. Basic beam parameters -- 16.3. Mutual coherence function, pt. I -- 16.4. Mutual coherence function, pt. II -- 16.5. Scintillation index, pt. I -- 16.6. Scintillation index, pt. II -- 16.7. FSO communication systems -- 16.8. Ladar model in free space -- 16.9. Ladar model in optical turbulence -- 16.10. Summary and discussion -- 16.11. Worked examples -- Problems -- References
  • 17. Other beam shapes -- 17.1. Introduction -- 17.2. Beam spreading: higher-order gaussian beams -- 17.3. Annular beam -- 17.4. Other beams -- 17.5. Summary and discussion -- Problems -- References
  • 18. Pulse propagation -- 18.1. Introduction -- 18.2. Background -- 18.3. Two-frequency mutual coherence function -- 18.4. Four-frequency cross-coherence function -- 18.5. Summary and discussion -- Problems -- References
  • Appendix I. Special functions -- Appendix II. Integral table -- Appendix III. Tables of beam statistics -- Index
Dimensions
unknown
Edition
2nd ed.
Extent
1 online resource (xxiii, 782 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819459480
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader

Library Locations

Processing Feedback ...