Coverart for item
The Resource MEMS silicon oscillating accelerometers and readout circuits, editor, Yong Ping Xu

MEMS silicon oscillating accelerometers and readout circuits, editor, Yong Ping Xu

Label
MEMS silicon oscillating accelerometers and readout circuits
Title
MEMS silicon oscillating accelerometers and readout circuits
Statement of responsibility
editor, Yong Ping Xu
Contributor
Distributor
Editor
Publisher
Subject
Genre
Language
eng
Summary
Most MEMS accelerometers on the market today are capacitive accelerometers that are based on the displacement sensing mechanism. This book is intended to cover recent developments of MEMS silicon oscillating accelerometers (SOA), also referred to as MEMS resonant accelerometer. As contrast to the capacitive accelerometer, the MEMS SOA is based on the force sensing mechanism, where the input acceleration is converted to a frequency output. MEMS Silicon Oscillating Accelerometers and Readout Circuits consists of six chapters and covers both MEMS sensor and readout circuit, and provides an in-depth coverage on the design and modelling of the MEMS SOA with several recently reported prototypes. The book is not only useful to researchers and engineers who are familiar with the topic, but also appeals to those who have general interests in MEMS inertial sensors. The book includes extensive references that provide further information on this topic
Member of
Cataloging source
CaBNVSL
Dewey number
681/.2
Illustrations
illustrations
Index
index present
LC call number
TA165
LC item number
.M46 2019eb
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Xu, Yong Ping
  • IEEE Xplore (Online Service)
  • River Publishers
Series statement
River publishers series in circuits and systems
http://library.link/vocab/subjectName
  • Accelerometers
  • Microelectromechanical systems
Label
MEMS silicon oscillating accelerometers and readout circuits, editor, Yong Ping Xu
Instantiates
Publication
Distribution
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • Preface xi -- List of Contributors xv -- List of Figures xvii -- List of Tables xxvii -- List of Abbreviations xxix -- List of Notations xxxiii -- 1 Mechanical Design of Micromechanical Silicon Oscillating Accelerometer 1 Anping Qiu 1.1 Introduction 1 -- 1.2 Mechanical Structure Design 3 -- 1.2.1 Theory of Operation 3 -- 1.2.2 Modelling of DETF Resonator for Closed-form Analysis 4 -- 1.2.3 Micro Lever Mechanism and Amplification Factor 8 -- 1.2.4 System Amplification Factor n' 13 -- 1.2.5 Scale Factor 13 -- 1.2.6 Bias 14 -- 1.2.7 Thermal Sensitivity 15 -- 1.2.8 Stiffness Nonlinearity 16 -- 1.3 Fabrication and Testing 19 -- 1.3.1 SOA Fabrication 19 -- 1.3.2 Testing 21 -- 1.4 Conclusion 23 -- References 23 -- 2 Front-end Amplifiers for MEMS Silicon Oscillating Accelerometers 25 Yang Zhao and Yong Ping Xu 2.1 Capacitive Sensing in MEMS Sensors 25 -- 2.2 Front-end Amplifiers for MEMS Oscillators 29 -- 2.2.1 Single-Stage Resistive Feedback TIA 29 -- 2.2.1.1 Stability and bandwidth 30 -- 2.2.1.2 Input-referred noise 31 -- 2.2.2 Two-Stage Resistive Feedback TIA 34 -- 2.2.3 T-Network Resistive Feedback TIA 36 -- 2.2.4 Charge-Sensing Amplifier (CSA) 37 -- 2.2.5 Capacitive Feedback TIA 40 -- 2.3 Front-end Amplifier for MEMS SOA 42 -- 2.3.1 Concept of MEMS SOA and its Front-end 42 -- 2.3.2 Continuous-Time Integrator-Differentiator-Based TIA 45 -- 2.3.3 Discrete-Time Integrator-Differentiator-Based Amplifier 49 -- 2.3.4 Front-end Based on Passive Charge Sensing 54 -- 2.4 Summary 57 -- References 59 -- 3 MEMS Silicon Oscillating Accelerometer Readout Circuit 63 Xi Wang and Yong Ping Xu 3.1 Introduction 64 -- 3.1.1 Concept of MEMS Silicon Oscillating Accelerometer (SOA) 64 -- 3.1.2 Readout Circuits for MEMS SOA 65 -- 3.1.3 Acceleration Noise Characterization 66 -- 3.2 Readout Circuit 69 -- 3.2.1 MEMS Oscillator 69 -- 3.2.1.1 Front-end amplifier 69 -- 3.2.1.2 Oscillation-sustaining circuit 70 -- 3.2.2 Amplitude Control 70 -- 3.2.2.1 Amplitude-stiffness effect 70 -- 3.2.2.2 Noise model of the AAC loop 71
  • 3.2.3 Phase Noise of the MEMS Oscillator 73 -- 3.3 Circuit Implementation 76 -- 3.3.1 Overall Readout Circuit at System Level 76 -- 3.3.2 Front-end Amplifier 76 -- 3.3.3 AAC Circuits 79 -- 3.3.4 Amplitude Detector 81 -- 3.3.5 Buffer 82 -- 3.3.6 Error Amplifier 83 -- 3.3.7 Variable Gain Amplifier (VGA) 86 -- 3.4 Performance 87 -- 3.5 Conclusion 90 -- References 91 -- 4 An MEM Silicon Oscillating Accelerometer Employing a PLL and a Noise Shaping Frequency-to-Digital Converter 93 Jian Zhao, Yong Ping Xu and Yan Su 4.1 Introduction 93 -- 4.2 PLL-Based MEMS SOA 95 -- 4.2.1 Noise Aliasing 96 -- 4.2.2 Start-up Issue 99 -- 4.2.3 PLL Phase Tracking 99 -- 4.3 PLL-Based Sigma-Delta FDC 101 -- 4.3.1 A Brief Review of Existing FDCs 102 -- 4.3.1.1 Reset counter-based FDC 102 -- 4.3.1.2 Delta-sigma FDC (VE FDC) 103 -- 4.3.1.3 PLL-based FDC (PLL-FDC) 104 -- 4.3.2 A Modified PLL-based FDC (MPLL-FDC) 105 -- 4.3.3 Analysis of Quantization Error in MPLL-FDC 107 -- 4.4 Stability of the PLL with a Hybrid PFD 110 -- 4.5 Noises in PLL-Based MEMS SOA 114 -- 4.6 Key Circuit Designs for PLL-based MEMS SOA 116 -- 4.6.1 Analog Front-end Amplifier 116 -- 4.6.2 Hybrid Mode Phase Frequency Detector 118 -- 4.6.3 Phase-Lock Loop with FDC 121 -- 4.7 Experiment Results of a Prototype PLL-based MEMS SOA 122 -- 4.7.1 Prototype Implementation 122 -- 4.7.2 FDC Measurement Results 123 -- 4.7.3 MEMS SOA Measurement Results 123 -- 4.8 Conclusion 128 -- References 129 -- 5 A System-decomposition Model for MEMS Silicon Oscillating Accelerometer 133 Jian Zhao, Yong Ping Xu and Yan Su 5.1 Introduction 133 -- 5.2 Silicon Oscillating Accelerometer 136 -- 5.3 Noise Sources 137 -- 5.3.1 Mechanical Noises 137 -- 5.3.2 Electronic Noises 137 -- 5.4 Noise Classification 138 -- 5.4.1 Additive and Multiplicative Noises 139 -- 5.4.2 Stiffness Modulation Noise 139 -- 5.4.3 Noise Classification Examples 140 -- 5.5 System Decomposition Model 142 -- 5.5.1 Time-domain Decomposition for Damped MEMS Resonator 142 -- 5.5.2 Frequency-domain Decomposition for Damped MEMS Resonator 145
  • 5.5.3 Modulation Matrix 146 -- 5.5.4 Decomposition of a Practical MEMS Oscillation System 146 -- 5.5.5 Phase Noise Modeling of Entire MEMS SOA Encompassing Nonlinearities 148 -- 5.6 Noise Estimation with System Decomposition Phase Noise Model 149 -- 5.7 Numerical Simulation 156 -- 5.7.1 Performance Prediction 157 -- 5.7.2 The Optimal MEMS Resonator Displacement Amplitude 159 -- 5.8 Summary 159 -- References 160 -- 6 Resonant Seismic Sensor 163 Xudong Zou 6.1 Introduction 163 -- 6.2 Sensor Design 164 -- 6.2.1 Sensor Topology 164 -- 6.2.2 Mechanical Structure Design 166 -- 6.2.3 Resonant Sensing Element 166 -- 6.2.3.1 Analytical model 166 -- 6.2.3.2 Scale factor optimization 170 -- 6.2.3.3 Nonlinearity of scale factor 172 -- 6.2.3.4 Conclusions 175 -- 6.2.4 Inertial Force Amplifier 175 -- 6.2.4.1 Micro-leverage mechanism 175 -- 6.2.4.2 Lever amplification factor 176 -- 6.2.4.3 Effective amplification factor 182 -- 6.2.4.4 Conclusion 184 -- 6.2.5 Proof Mass and Suspension Frame 185 -- 6.2.5.1 Proof-mass design 185 -- 6.2.5.2 Suspensions design 187 -- 6.2.6 Mechanical Structure Design Evaluation 188 -- 6.3 Electronic Circuitry Design 192 -- 6.3.1 Electro-mechanical Transducer Design For DETF Sensing Element 193 -- 6.3.2 Electro-mechanical Model of DETF Sensing Element 195 -- 6.3.2.1 Linear model of DETF sensing element 195 -- 6.3.2.2 Nonlinear model of DETF sensing element 198 -- 6.3.3 Design of Frequency Tracking Oscillator 204 -- 6.3.4 Conclusion 206 -- 6.4 Seismic Acceleration Resolution 207 -- 6.4.1 Frequency Noise Model 207 -- 6.4.1.1 PSD of phase/frequency noise 210 -- 6.4.1.2 Allan variance 211 -- 6.4.2 Factors Influencing Resolution 213 -- 6.4.2.1 Phase noise of the DETF sensing element 213 -- 6.4.2.2 Noise in semiconductor amplifiers 216 -- 6.4.2.3 Noise in the frequency tracking oscillator 220 -- 6.4.3 Estimation of Resonant Seismic Sensors' Resolution 224 -- 6.4.3.1 Mechanical-thermal noise limited resolution 224 -- 6.4.3.2 Electronic noise-limited resolution 227
  • 6.4.3.3 Combinative resolution estimation 230 -- 6.4.4 Conclusion 230 -- 6.5 Drift in Resonant Seismic Sensors 230 -- 6.5.1 Temperature Drift 231 -- 6.5.1.1 Temperature-dependent elasticity 231 -- 6.5.1.2 Thermal expansion and thermal stress 234 -- 6.5.1.3 Temperature-dependent DC bias voltage 238 -- 6.5.2 Pressure-Induced Drift 239 -- 6.5.3 Charge-Induced Drift 241 -- 6.6 Device Fabrication and Integration 242 -- 6.6.1 Micromachining Process 242 -- 6.6.2 Low Pressure Package 243 -- 6.6.3 Laboratory Calibration and Results 244 -- 6.6.3.1 Experimental setup 245 -- 6.6.4 Static Calibration 246 -- 6.6.4.1 Accelerometer scale factor 246 -- 6.6.4.2 Accelerometer resolution 247 -- 6.6.5 Dynamic Calibration 251 -- 6.6.6 Conclusion 252 -- References 253 -- Index 259 -- About the Editor 263
Control code
9218867
Dimensions
unknown
Extent
1 PDF (xlvii, 263 pages)
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9788770220446
Media category
electronic
Media MARC source
isbdmedia
Other physical details
illustrations, charts.
Specific material designation
remote
System control number
  • (CaBNVSL)mat09218867
  • (IDAMS)0b0000648d19a1d1
System details
Mode of access: World Wide Web
Label
MEMS silicon oscillating accelerometers and readout circuits, editor, Yong Ping Xu
Publication
Distribution
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • Preface xi -- List of Contributors xv -- List of Figures xvii -- List of Tables xxvii -- List of Abbreviations xxix -- List of Notations xxxiii -- 1 Mechanical Design of Micromechanical Silicon Oscillating Accelerometer 1 Anping Qiu 1.1 Introduction 1 -- 1.2 Mechanical Structure Design 3 -- 1.2.1 Theory of Operation 3 -- 1.2.2 Modelling of DETF Resonator for Closed-form Analysis 4 -- 1.2.3 Micro Lever Mechanism and Amplification Factor 8 -- 1.2.4 System Amplification Factor n' 13 -- 1.2.5 Scale Factor 13 -- 1.2.6 Bias 14 -- 1.2.7 Thermal Sensitivity 15 -- 1.2.8 Stiffness Nonlinearity 16 -- 1.3 Fabrication and Testing 19 -- 1.3.1 SOA Fabrication 19 -- 1.3.2 Testing 21 -- 1.4 Conclusion 23 -- References 23 -- 2 Front-end Amplifiers for MEMS Silicon Oscillating Accelerometers 25 Yang Zhao and Yong Ping Xu 2.1 Capacitive Sensing in MEMS Sensors 25 -- 2.2 Front-end Amplifiers for MEMS Oscillators 29 -- 2.2.1 Single-Stage Resistive Feedback TIA 29 -- 2.2.1.1 Stability and bandwidth 30 -- 2.2.1.2 Input-referred noise 31 -- 2.2.2 Two-Stage Resistive Feedback TIA 34 -- 2.2.3 T-Network Resistive Feedback TIA 36 -- 2.2.4 Charge-Sensing Amplifier (CSA) 37 -- 2.2.5 Capacitive Feedback TIA 40 -- 2.3 Front-end Amplifier for MEMS SOA 42 -- 2.3.1 Concept of MEMS SOA and its Front-end 42 -- 2.3.2 Continuous-Time Integrator-Differentiator-Based TIA 45 -- 2.3.3 Discrete-Time Integrator-Differentiator-Based Amplifier 49 -- 2.3.4 Front-end Based on Passive Charge Sensing 54 -- 2.4 Summary 57 -- References 59 -- 3 MEMS Silicon Oscillating Accelerometer Readout Circuit 63 Xi Wang and Yong Ping Xu 3.1 Introduction 64 -- 3.1.1 Concept of MEMS Silicon Oscillating Accelerometer (SOA) 64 -- 3.1.2 Readout Circuits for MEMS SOA 65 -- 3.1.3 Acceleration Noise Characterization 66 -- 3.2 Readout Circuit 69 -- 3.2.1 MEMS Oscillator 69 -- 3.2.1.1 Front-end amplifier 69 -- 3.2.1.2 Oscillation-sustaining circuit 70 -- 3.2.2 Amplitude Control 70 -- 3.2.2.1 Amplitude-stiffness effect 70 -- 3.2.2.2 Noise model of the AAC loop 71
  • 3.2.3 Phase Noise of the MEMS Oscillator 73 -- 3.3 Circuit Implementation 76 -- 3.3.1 Overall Readout Circuit at System Level 76 -- 3.3.2 Front-end Amplifier 76 -- 3.3.3 AAC Circuits 79 -- 3.3.4 Amplitude Detector 81 -- 3.3.5 Buffer 82 -- 3.3.6 Error Amplifier 83 -- 3.3.7 Variable Gain Amplifier (VGA) 86 -- 3.4 Performance 87 -- 3.5 Conclusion 90 -- References 91 -- 4 An MEM Silicon Oscillating Accelerometer Employing a PLL and a Noise Shaping Frequency-to-Digital Converter 93 Jian Zhao, Yong Ping Xu and Yan Su 4.1 Introduction 93 -- 4.2 PLL-Based MEMS SOA 95 -- 4.2.1 Noise Aliasing 96 -- 4.2.2 Start-up Issue 99 -- 4.2.3 PLL Phase Tracking 99 -- 4.3 PLL-Based Sigma-Delta FDC 101 -- 4.3.1 A Brief Review of Existing FDCs 102 -- 4.3.1.1 Reset counter-based FDC 102 -- 4.3.1.2 Delta-sigma FDC (VE FDC) 103 -- 4.3.1.3 PLL-based FDC (PLL-FDC) 104 -- 4.3.2 A Modified PLL-based FDC (MPLL-FDC) 105 -- 4.3.3 Analysis of Quantization Error in MPLL-FDC 107 -- 4.4 Stability of the PLL with a Hybrid PFD 110 -- 4.5 Noises in PLL-Based MEMS SOA 114 -- 4.6 Key Circuit Designs for PLL-based MEMS SOA 116 -- 4.6.1 Analog Front-end Amplifier 116 -- 4.6.2 Hybrid Mode Phase Frequency Detector 118 -- 4.6.3 Phase-Lock Loop with FDC 121 -- 4.7 Experiment Results of a Prototype PLL-based MEMS SOA 122 -- 4.7.1 Prototype Implementation 122 -- 4.7.2 FDC Measurement Results 123 -- 4.7.3 MEMS SOA Measurement Results 123 -- 4.8 Conclusion 128 -- References 129 -- 5 A System-decomposition Model for MEMS Silicon Oscillating Accelerometer 133 Jian Zhao, Yong Ping Xu and Yan Su 5.1 Introduction 133 -- 5.2 Silicon Oscillating Accelerometer 136 -- 5.3 Noise Sources 137 -- 5.3.1 Mechanical Noises 137 -- 5.3.2 Electronic Noises 137 -- 5.4 Noise Classification 138 -- 5.4.1 Additive and Multiplicative Noises 139 -- 5.4.2 Stiffness Modulation Noise 139 -- 5.4.3 Noise Classification Examples 140 -- 5.5 System Decomposition Model 142 -- 5.5.1 Time-domain Decomposition for Damped MEMS Resonator 142 -- 5.5.2 Frequency-domain Decomposition for Damped MEMS Resonator 145
  • 5.5.3 Modulation Matrix 146 -- 5.5.4 Decomposition of a Practical MEMS Oscillation System 146 -- 5.5.5 Phase Noise Modeling of Entire MEMS SOA Encompassing Nonlinearities 148 -- 5.6 Noise Estimation with System Decomposition Phase Noise Model 149 -- 5.7 Numerical Simulation 156 -- 5.7.1 Performance Prediction 157 -- 5.7.2 The Optimal MEMS Resonator Displacement Amplitude 159 -- 5.8 Summary 159 -- References 160 -- 6 Resonant Seismic Sensor 163 Xudong Zou 6.1 Introduction 163 -- 6.2 Sensor Design 164 -- 6.2.1 Sensor Topology 164 -- 6.2.2 Mechanical Structure Design 166 -- 6.2.3 Resonant Sensing Element 166 -- 6.2.3.1 Analytical model 166 -- 6.2.3.2 Scale factor optimization 170 -- 6.2.3.3 Nonlinearity of scale factor 172 -- 6.2.3.4 Conclusions 175 -- 6.2.4 Inertial Force Amplifier 175 -- 6.2.4.1 Micro-leverage mechanism 175 -- 6.2.4.2 Lever amplification factor 176 -- 6.2.4.3 Effective amplification factor 182 -- 6.2.4.4 Conclusion 184 -- 6.2.5 Proof Mass and Suspension Frame 185 -- 6.2.5.1 Proof-mass design 185 -- 6.2.5.2 Suspensions design 187 -- 6.2.6 Mechanical Structure Design Evaluation 188 -- 6.3 Electronic Circuitry Design 192 -- 6.3.1 Electro-mechanical Transducer Design For DETF Sensing Element 193 -- 6.3.2 Electro-mechanical Model of DETF Sensing Element 195 -- 6.3.2.1 Linear model of DETF sensing element 195 -- 6.3.2.2 Nonlinear model of DETF sensing element 198 -- 6.3.3 Design of Frequency Tracking Oscillator 204 -- 6.3.4 Conclusion 206 -- 6.4 Seismic Acceleration Resolution 207 -- 6.4.1 Frequency Noise Model 207 -- 6.4.1.1 PSD of phase/frequency noise 210 -- 6.4.1.2 Allan variance 211 -- 6.4.2 Factors Influencing Resolution 213 -- 6.4.2.1 Phase noise of the DETF sensing element 213 -- 6.4.2.2 Noise in semiconductor amplifiers 216 -- 6.4.2.3 Noise in the frequency tracking oscillator 220 -- 6.4.3 Estimation of Resonant Seismic Sensors' Resolution 224 -- 6.4.3.1 Mechanical-thermal noise limited resolution 224 -- 6.4.3.2 Electronic noise-limited resolution 227
  • 6.4.3.3 Combinative resolution estimation 230 -- 6.4.4 Conclusion 230 -- 6.5 Drift in Resonant Seismic Sensors 230 -- 6.5.1 Temperature Drift 231 -- 6.5.1.1 Temperature-dependent elasticity 231 -- 6.5.1.2 Thermal expansion and thermal stress 234 -- 6.5.1.3 Temperature-dependent DC bias voltage 238 -- 6.5.2 Pressure-Induced Drift 239 -- 6.5.3 Charge-Induced Drift 241 -- 6.6 Device Fabrication and Integration 242 -- 6.6.1 Micromachining Process 242 -- 6.6.2 Low Pressure Package 243 -- 6.6.3 Laboratory Calibration and Results 244 -- 6.6.3.1 Experimental setup 245 -- 6.6.4 Static Calibration 246 -- 6.6.4.1 Accelerometer scale factor 246 -- 6.6.4.2 Accelerometer resolution 247 -- 6.6.5 Dynamic Calibration 251 -- 6.6.6 Conclusion 252 -- References 253 -- Index 259 -- About the Editor 263
Control code
9218867
Dimensions
unknown
Extent
1 PDF (xlvii, 263 pages)
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9788770220446
Media category
electronic
Media MARC source
isbdmedia
Other physical details
illustrations, charts.
Specific material designation
remote
System control number
  • (CaBNVSL)mat09218867
  • (IDAMS)0b0000648d19a1d1
System details
Mode of access: World Wide Web

Library Locations