Coverart for item
The Resource Optical design : applying the fundamentals, Max J. Riedl, (electronic book)

Optical design : applying the fundamentals, Max J. Riedl, (electronic book)

Label
Optical design : applying the fundamentals
Title
Optical design
Title remainder
applying the fundamentals
Statement of responsibility
Max J. Riedl
Creator
Contributor
Subject
Language
eng
Summary
This text is written for engineers and scientists who have some experience in the field of optics and want to know more about the details and derivations of equations used in optical design. Organized by topic, the book begins with the fundamental law of geometrical optics, Snell's law of refraction, and states the paraxial ray trace equations, then moves on to thin lenses and increasingly more sophisticated components and multi-element systems. Each topic is covered in depth and provides comprehensive information on performance and limitations. While the text is based on general optical laws, special emphasis has been placed on the two major infrared regions--the mid-wave (MWIR) and the long-wave (LWIR). This is particularly important with regard to diffractive hybrids, which have found their place in these long wavelength areas for the correction of chromatic aberrations and athermalization. Comments relating to single-point diamond turning have also been included because this process is predominantly used to produce optical elements for the infrared regions
Member of
Additional physical form
Also available in print.
Cataloging source
CaBNvSL
http://library.link/vocab/creatorName
Riedl, Max J.
Dewey number
681/.4
Illustrations
illustrations
Index
index present
LC call number
QC372.2.D4
LC item number
R54 2009e
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Society of Photo-optical Instrumentation Engineers
Series statement
Tutorial texts in optical engineering
Series volume
TT84
http://library.link/vocab/subjectName
Optical instruments
Target audience
  • adult
  • specialized
Label
Optical design : applying the fundamentals, Max J. Riedl, (electronic book)
Instantiates
Publication
Note
  • "SPIE digital library."
  • Title from PDF t.p. (viewed on 8/23/09)
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Chapter 1. Law of refraction: the foundation of geometrical optics. 1.1. Introduction -- 1.2. Fermat's principle -- 1.3. Snell and the lens -- 1.4. Graphical ray tracing -- 1.5. Paraxial ray tracing -- Chapter 2. Best shape for a thin lens. 2.1. Concept of thin lens -- 2.2. Object at any position -- 2.3. Object at infinity with added field of view -- 2.4. Special case
  • Chapter 3. Best shapes for multiple thin lenses, aspherizing, and the natural stop position. 3.1. Introduction -- 3.2. Best shapes for minimum spherical aberration -- 3.3. Aspherizing a singlet to eliminate spherical aberration -- 3.4. Correcting coma and spherical aberration -- 3.5. Natural stop position. -- Chapter 4. Transition from a thin lens to a thick lens. 4.1. Introduction -- 4.2. Adding a thickness and changing the second surface radius -- 4.3. Change of spherical aberration with added thickness -- Chapter 5. Achromats. 5.1. Introduction -- 5.2. Thin achromat for the VIS spectrum, on-axis performance -- 5.3. Smith's method of determining the surface shapes -- 5.4. Achromat for the MWIR region -- 5.5. Achromat for the LWIR region -- 5.6. Diamond-turned hybrid
  • Chapter 6. Systems with two separated components. 6.1. Introduction -- 6.2. Dialyte : an air-spaced achromat -- 6.3. Telephoto and reversed telephoto.-- Chapter 7. From an air-spaced doublet to a triplet. 7.1. Introduction -- 7.2. Chromatic aberration -- 7.3. Example, a conventional triplet -- 7.4. Hybrid Petzval objective with a cold stop.-- Chapter 8. A hybrid for two wavelengths. 8.1. Introduction -- 8.2. Basic lens shape for the long wavelength -- 8.3. Required diffractive profile
  • Chapter 9. Athermats. 9.1. Introduction -- 9.2. Focus shift of a refractive element -- 9.3. Athermalization with a doublet -- 9.4. Focus shift of a diffractive lens -- 9.5. Design examples -- 9.6. Impact of housing material -- 9.7. Athermat for the CO2 laser line -- 9.8. Athermalized achromat -- 9.9. Effect of quarter-wave limit without athermalization.-- Chapter 10. The Ball lens. 10.1. Introduction -- 10.2. Spherical aberration -- 10.3. Coma -- 10.4. Astigmatism.-- Chapter 11. Seidel and the Pegel diagrams. 11.1. Introduction -- 11.2. Triplet for the LWIR region -- 11.3. Cassegrain version with a Maksutov-Mangin mirror combination for the LWIR region
  • Chapter 12. The single-imaging mirror. 12.1. Introduction -- 12.2. Spherical mirror -- 12.3. Toroidal mirrors -- 12.4. Examples -- 12.5. Parabolic mirror -- 12.6. Manufacturing remarks -- 12.7. Mangin mirror.-- Chapter 13. Eight single optical elements as imaging objectives. 13.1. Introduction -- 13.2. Diffraction limit -- 13.3. Eight chosen configurations -- 13.4. Shapes of the elements -- 13.5. Aberrations -- 13.6. Examples
  • Chapter 14. A progression of performance with an increase in lens complexity. 14.1. Objectives -- Chapter 15. Two-mirror systems as telescope and microscope objectives. 15.1. Introduction -- 15.2. Basic Cassegrain telescope layout -- 15.3. Cassegrain with two spherical mirrors -- 15.4. Classic Cassegrain system -- 15.5. Dall-Kirkham arrangement -- 15.6. Ritchey-Chretien configuration -- 15.7. Examples -- 15.8. Cassegrain with Mangin as a secondary reflector -- 15.9. Gregorian telescope -- 15.10. Gregorian microscope objective -- 15.11. Two Schwarzschild objectives -- 15.12. Solid microscope objective
  • Chapter 16. The plane-parallel plate. 16.1. Introduction -- 16.2. Aberrations -- 16.3. Shift of image -- 16.4. Tilted plate -- 16.5. Two tilted plates.-- Chapter 17. MTF, limits, and pixel sizes. 17.1. Introduction -- 17.2. Optical modulation transfer function -- 17.3. Focal plane array -- Chapter 18. Details of a hybrid lens. 18.1. Introduction -- 18.2. Hybrid -- 18.3. Coordinates of the combined surface
  • Chapter 19. From the Höegh meniscus to double anastigmats. 19.1. Introduction -- 19.2. Höegh meniscus -- 19.3. Hypergon lens -- 19.4. Achromatic double lens -- 19.5. Double anastigmats -- Index
Dimensions
unknown
Extent
1 online resource (xv, 170 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819477996
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader
Label
Optical design : applying the fundamentals, Max J. Riedl, (electronic book)
Publication
Note
  • "SPIE digital library."
  • Title from PDF t.p. (viewed on 8/23/09)
Bibliography note
Includes bibliographical references and index
Color
black and white
Contents
  • Chapter 1. Law of refraction: the foundation of geometrical optics. 1.1. Introduction -- 1.2. Fermat's principle -- 1.3. Snell and the lens -- 1.4. Graphical ray tracing -- 1.5. Paraxial ray tracing -- Chapter 2. Best shape for a thin lens. 2.1. Concept of thin lens -- 2.2. Object at any position -- 2.3. Object at infinity with added field of view -- 2.4. Special case
  • Chapter 3. Best shapes for multiple thin lenses, aspherizing, and the natural stop position. 3.1. Introduction -- 3.2. Best shapes for minimum spherical aberration -- 3.3. Aspherizing a singlet to eliminate spherical aberration -- 3.4. Correcting coma and spherical aberration -- 3.5. Natural stop position. -- Chapter 4. Transition from a thin lens to a thick lens. 4.1. Introduction -- 4.2. Adding a thickness and changing the second surface radius -- 4.3. Change of spherical aberration with added thickness -- Chapter 5. Achromats. 5.1. Introduction -- 5.2. Thin achromat for the VIS spectrum, on-axis performance -- 5.3. Smith's method of determining the surface shapes -- 5.4. Achromat for the MWIR region -- 5.5. Achromat for the LWIR region -- 5.6. Diamond-turned hybrid
  • Chapter 6. Systems with two separated components. 6.1. Introduction -- 6.2. Dialyte : an air-spaced achromat -- 6.3. Telephoto and reversed telephoto.-- Chapter 7. From an air-spaced doublet to a triplet. 7.1. Introduction -- 7.2. Chromatic aberration -- 7.3. Example, a conventional triplet -- 7.4. Hybrid Petzval objective with a cold stop.-- Chapter 8. A hybrid for two wavelengths. 8.1. Introduction -- 8.2. Basic lens shape for the long wavelength -- 8.3. Required diffractive profile
  • Chapter 9. Athermats. 9.1. Introduction -- 9.2. Focus shift of a refractive element -- 9.3. Athermalization with a doublet -- 9.4. Focus shift of a diffractive lens -- 9.5. Design examples -- 9.6. Impact of housing material -- 9.7. Athermat for the CO2 laser line -- 9.8. Athermalized achromat -- 9.9. Effect of quarter-wave limit without athermalization.-- Chapter 10. The Ball lens. 10.1. Introduction -- 10.2. Spherical aberration -- 10.3. Coma -- 10.4. Astigmatism.-- Chapter 11. Seidel and the Pegel diagrams. 11.1. Introduction -- 11.2. Triplet for the LWIR region -- 11.3. Cassegrain version with a Maksutov-Mangin mirror combination for the LWIR region
  • Chapter 12. The single-imaging mirror. 12.1. Introduction -- 12.2. Spherical mirror -- 12.3. Toroidal mirrors -- 12.4. Examples -- 12.5. Parabolic mirror -- 12.6. Manufacturing remarks -- 12.7. Mangin mirror.-- Chapter 13. Eight single optical elements as imaging objectives. 13.1. Introduction -- 13.2. Diffraction limit -- 13.3. Eight chosen configurations -- 13.4. Shapes of the elements -- 13.5. Aberrations -- 13.6. Examples
  • Chapter 14. A progression of performance with an increase in lens complexity. 14.1. Objectives -- Chapter 15. Two-mirror systems as telescope and microscope objectives. 15.1. Introduction -- 15.2. Basic Cassegrain telescope layout -- 15.3. Cassegrain with two spherical mirrors -- 15.4. Classic Cassegrain system -- 15.5. Dall-Kirkham arrangement -- 15.6. Ritchey-Chretien configuration -- 15.7. Examples -- 15.8. Cassegrain with Mangin as a secondary reflector -- 15.9. Gregorian telescope -- 15.10. Gregorian microscope objective -- 15.11. Two Schwarzschild objectives -- 15.12. Solid microscope objective
  • Chapter 16. The plane-parallel plate. 16.1. Introduction -- 16.2. Aberrations -- 16.3. Shift of image -- 16.4. Tilted plate -- 16.5. Two tilted plates.-- Chapter 17. MTF, limits, and pixel sizes. 17.1. Introduction -- 17.2. Optical modulation transfer function -- 17.3. Focal plane array -- Chapter 18. Details of a hybrid lens. 18.1. Introduction -- 18.2. Hybrid -- 18.3. Coordinates of the combined surface
  • Chapter 19. From the Höegh meniscus to double anastigmats. 19.1. Introduction -- 19.2. Höegh meniscus -- 19.3. Hypergon lens -- 19.4. Achromatic double lens -- 19.5. Double anastigmats -- Index
Dimensions
unknown
Extent
1 online resource (xv, 170 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819477996
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader

Library Locations

Processing Feedback ...