Coverart for item
The Resource Optical imaging in projection microlithography, Alfred Kwok-Kit Wong, (electronic book)

Optical imaging in projection microlithography, Alfred Kwok-Kit Wong, (electronic book)

Label
Optical imaging in projection microlithography
Title
Optical imaging in projection microlithography
Statement of responsibility
Alfred Kwok-Kit Wong
Creator
Contributor
Subject
Language
eng
Summary
Here for the first time is an integrated mathematical view of the physics and numerical modeling of optical projection lithography that efficiently covers the full spectrum of the important concepts. Alfred Wong offers rigorous underpinning, clarity in systematic formulation, physical insight into emerging ideas, as well as a system-level view of the parameter tolerances required in manufacturing. Readers with a good working knowledge of calculus can follow the step-by-step development, and technologists can gather general concepts and the key equations that result. Even the casual reader will gain a perspective on the key concepts, which will likely help facilitate dialog among technologists
Member of
Additional physical form
Also available in print.
Cataloging source
CaBNvSL
http://library.link/vocab/creatorName
Wong, Alfred Kwok-Kit.
Dewey number
621.3815/31
Illustrations
illustrations
Index
index present
LC call number
TK7836
LC item number
.W66 2005e
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Society of Photo-optical Instrumentation Engineers
Series statement
Tutorial texts in optical engineering
Series volume
TT66
http://library.link/vocab/subjectName
  • Microlithography
  • Imaging systems
Target audience
  • adult
  • specialized
Label
Optical imaging in projection microlithography, Alfred Kwok-Kit Wong, (electronic book)
Instantiates
Publication
Note
  • "SPIE digital library."
  • Title from PDF t.p. (viewed on 8/32/09)
Bibliography note
Includes bibliographical references (p. 219-229) and index
Color
black and white
Contents
  • 1. Basic electromagnetism. 1.1. Maxwell's equations -- 1.2. Electromagnetic energy -- 1.3. The wave equation -- 1.4. Plane waves -- 1.5. Spherical waves -- 1.6. Harmonic waves -- 1.7. Quasi-monochromatic light
  • 2. Elements of geometrical optics. 2.1. The eikonal equation -- 2.2. Light rays -- 2.3. Snell's law -- 2.4. Thin lens -- 2.5. Representation of an exposure system
  • 3. Elements of diffraction theory. 3.1. Qualitative consideration -- 3.2. Reciprocity -- 3.3. The Helmholtz-Kirchhoff theorem -- 3.4. Fresnel-Kirchhoff diffraction -- 3.5. The Rayleigh-Sommerfeld diffraction formula -- 3.6. Fraunhofer diffraction -- 3.7. Fraunhofer diffraction patterns
  • 4. Imaging of extended objects with finite sources. 4.1. Coherent illumination -- 4.2. Obliquity factor -- 4.3. Spatial correlation of light -- 4.4. Köhler's illumination method -- 4.5. Partially coherent imaging
  • 5. Resolution and image enhancement. 5.1. Image intensity spectrum -- 5.2. Binary intensity objects under on-axis illumination -- 5.3. Off-axis illumination -- 5.4. Attenuated phase-shifting mask -- 5.5. Alternating phase-shifting mask -- 5.6. Minimum half-pitch -- 5.7. Minimum dimension
  • 6. Oblique rays. 6.1. Polarization -- 6.2. Vector imaging -- 6.3. Wave propagation across a dielectric interface -- 6.4. Stratified media -- 6.5. Intensity distribution in photoresist -- 6.6. Immersion imaging -- 6.7. Imaging with oblique rays
  • 7. Aberrations. 7.1. Diffraction of an aberrated wavefront -- 7.2. General properties of the aberration function -- 7.3. Zernike polynomials -- 7.4. Effects on imaging -- 7.5. Measurement
  • 8. Numerical computation. 8.1. Imaging equations -- 8.2. Transmission cross-coefficient integration -- 8.3. Source points integration -- 8.4. Coherent decomposition -- 8.5. Object spectrum -- 8.6. Remarks
  • 9 Variabilities. 9.1. Categorization -- 9.2. Proximity effect -- 9.3. Object variabilities (photomask errors) -- 9.4. Polarization effects -- 9.5. Illumination -- 9.6. Pupil -- 9.7. Focus -- 9.8. Dose -- 9.9. Flare -- 9.10. Remarks
  • A. Birefringence -- B. Stationarity and ergodicity -- C. Some Zernike polynomials -- D. Simulator accuracy tests -- E. Select refractive indexes -- F. Assorted theorems and identities -- Bibliography -- Solutions to exercises -- Index
Dimensions
unknown
Extent
1 online resource (xix, 254 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819478702
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader
Label
Optical imaging in projection microlithography, Alfred Kwok-Kit Wong, (electronic book)
Publication
Note
  • "SPIE digital library."
  • Title from PDF t.p. (viewed on 8/32/09)
Bibliography note
Includes bibliographical references (p. 219-229) and index
Color
black and white
Contents
  • 1. Basic electromagnetism. 1.1. Maxwell's equations -- 1.2. Electromagnetic energy -- 1.3. The wave equation -- 1.4. Plane waves -- 1.5. Spherical waves -- 1.6. Harmonic waves -- 1.7. Quasi-monochromatic light
  • 2. Elements of geometrical optics. 2.1. The eikonal equation -- 2.2. Light rays -- 2.3. Snell's law -- 2.4. Thin lens -- 2.5. Representation of an exposure system
  • 3. Elements of diffraction theory. 3.1. Qualitative consideration -- 3.2. Reciprocity -- 3.3. The Helmholtz-Kirchhoff theorem -- 3.4. Fresnel-Kirchhoff diffraction -- 3.5. The Rayleigh-Sommerfeld diffraction formula -- 3.6. Fraunhofer diffraction -- 3.7. Fraunhofer diffraction patterns
  • 4. Imaging of extended objects with finite sources. 4.1. Coherent illumination -- 4.2. Obliquity factor -- 4.3. Spatial correlation of light -- 4.4. Köhler's illumination method -- 4.5. Partially coherent imaging
  • 5. Resolution and image enhancement. 5.1. Image intensity spectrum -- 5.2. Binary intensity objects under on-axis illumination -- 5.3. Off-axis illumination -- 5.4. Attenuated phase-shifting mask -- 5.5. Alternating phase-shifting mask -- 5.6. Minimum half-pitch -- 5.7. Minimum dimension
  • 6. Oblique rays. 6.1. Polarization -- 6.2. Vector imaging -- 6.3. Wave propagation across a dielectric interface -- 6.4. Stratified media -- 6.5. Intensity distribution in photoresist -- 6.6. Immersion imaging -- 6.7. Imaging with oblique rays
  • 7. Aberrations. 7.1. Diffraction of an aberrated wavefront -- 7.2. General properties of the aberration function -- 7.3. Zernike polynomials -- 7.4. Effects on imaging -- 7.5. Measurement
  • 8. Numerical computation. 8.1. Imaging equations -- 8.2. Transmission cross-coefficient integration -- 8.3. Source points integration -- 8.4. Coherent decomposition -- 8.5. Object spectrum -- 8.6. Remarks
  • 9 Variabilities. 9.1. Categorization -- 9.2. Proximity effect -- 9.3. Object variabilities (photomask errors) -- 9.4. Polarization effects -- 9.5. Illumination -- 9.6. Pupil -- 9.7. Focus -- 9.8. Dose -- 9.9. Flare -- 9.10. Remarks
  • A. Birefringence -- B. Stationarity and ergodicity -- C. Some Zernike polynomials -- D. Simulator accuracy tests -- E. Select refractive indexes -- F. Assorted theorems and identities -- Bibliography -- Solutions to exercises -- Index
Dimensions
unknown
Extent
1 online resource (xix, 254 p. : ill.)
File format
multiple file formats
Form of item
electronic
Isbn
9780819478702
Other physical details
digital file.
Reformatting quality
access
Reproduction note
Electronic resource.
Specific material designation
remote
System details
System requirements: Adobe Acrobat Reader

Library Locations

Processing Feedback ...