Coverart for item
The Resource Optical solitons : theory and experiment, Edited by J. R. Taylor, (electronic book)

Optical solitons : theory and experiment, Edited by J. R. Taylor, (electronic book)

Label
Optical solitons : theory and experiment
Title
Optical solitons
Title remainder
theory and experiment
Statement of responsibility
Edited by J. R. Taylor
Contributor
Subject
Language
eng
Member of
Cataloging source
UkCbUP
Index
index present
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorDate
1949-
http://library.link/vocab/relatedWorkOrContributorName
  • Taylor, J. R.
  • Cambridge University Press.
Series statement
Cambridge studies in modern optics
Series volume
10
http://library.link/vocab/subjectName
  • Solitons
  • Optical fibers
Label
Optical solitons : theory and experiment, Edited by J. R. Taylor, (electronic book)
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • List of contributors
  • Preface
  • 1.
  • Optical solitons in fibers: theoretical review/
  • Akira Hasegawa
  • p. 1
  • 1.1.
  • Introduction.
  • p. 1
  • 1.2.
  • Derivation of the envelope equation for a light wave in a fiber.
  • p. 4
  • 1.3.
  • Properties of non-linear Schrodinger equation.
  • p. 14
  • 1.4.
  • Technical aspects of the design of optical soliton transmission systems.
  • p. 23
  • 1.5.
  • Summary and conclusion.
  • p. 28
  • References.
  • p. 28
  • 2.
  • Solitons in optical fibers: an experimental account/
  • L. F. Mollenauer
  • p. 30
  • 2.1.
  • Introduction.
  • p. 30
  • 2.2.
  • Dispersion, non-linearity and pulse narrowing in fibers.
  • p. 31
  • 2.3.
  • Experimental verification.
  • p. 36
  • 2.4.
  • soliton laser.
  • p. 38
  • 2.5.
  • Discovery of the soliton self-frequency shift.
  • p. 44
  • 2.6.
  • Experimental observation of interaction forces between solitons.
  • p. 48
  • 2.7.
  • Solitons in telecommunications.
  • p. 53
  • 2.8.
  • Conclusion.
  • p. 58
  • References.
  • p. 60
  • 3.
  • All-optical long-distance soliton-based transmission systems/
  • K. Smith
  • L. F. Mollenauer
  • p. 61
  • 3.1.
  • Introduction.
  • p. 61
  • 3.2.
  • Experimental investigation of long-distance soliton transmission.
  • p. 61
  • 3.3.
  • Further experiments.
  • p. 64
  • 3.4.
  • Conclusion.
  • p. 71
  • References.
  • p. 71
  • 4.
  • Non-linear propagation effects in optical fibres: numerical studies/
  • K. J. Blow
  • N. J. Doran
  • p. 73
  • 4.1.
  • Introduction.
  • p. 73
  • 4.2.
  • Solitons and inverse scattering theory.
  • p. 76
  • 4.3.
  • Numerical analysis.
  • p. 81
  • 4.4.
  • Initial value problems.
  • p. 84
  • 4.5.
  • Perturbations.
  • p. 88
  • 4.6.
  • Non-linear fibre devices and soliton switching.
  • p. 95
  • 4.7.
  • Conclusion.
  • p. 104
  • References.
  • p. 105
  • 5.
  • Soliton-soliton interactions/
  • C. Desem
  • P. L. Chu
  • p. 107
  • 5.1.
  • Introduction.
  • p. 107
  • 5.2.
  • Two-soliton interactions.
  • p. 108
  • 5.3.
  • Effect of higher-order dispersion on solitons.
  • p. 126
  • 5.4.
  • Soliton interaction in the presence of periodic amplification.
  • p. 133
  • 5.5.
  • Interaction among multiple solitons.
  • p. 140
  • References.
  • p. 151
  • 6.
  • Soliton amplification in erbium-doped fiber amplifiers and its application to soliton communication/
  • Masataka Nakazawa
  • p. 152
  • 6.1.
  • Introduction.
  • p. 152
  • 6.2.
  • General features of the erbium-doped fiber amplifier.
  • p. 153
  • 6.3.
  • Optical gain of erbium-doped fiber for picosecond high-power pulses.
  • p. 160
  • 6.4.
  • Single-wavelength soliton amplification and transmission.
  • p. 164
  • 6.5.
  • Dynamic range of the N = 1 solitons in a low-loss fiber.
  • p. 168
  • 6.6.
  • Multi-wavelength soliton amplification and transmission with collision.
  • p. 170
  • 6.7.
  • Subpicosecond soliton amplification.
  • p. 176
  • 6.8.
  • Femtosecond soliton amplification with adiabatic gain narrowing.
  • p. 179
  • 6.9.
  • GHz soliton generation using a gain-switched distributed feedback laser diode with spectral windowing.
  • p. 182
  • 6.10.
  • Soliton amplification in an ultralong distributed erbium-doped fiber amplifier.
  • p. 185
  • 6.11.
  • Dynamic soliton communication at 5-10 Gbit/s.
  • p. 189
  • 6.12.
  • Summary.
  • p. 195
  • References.
  • p. 195
  • V. N. Serkin
  • p. 197
  • 7.
  • Non-linear transformation of laser radiation and generation of Raman solitons in optical fibers/
  • E. M. Dianov
  • A. B. Grudinin
  • A. M. Prokhorov
  • 7.1.
  • Introduction.
  • p. 197
  • 7.2.
  • Formation of femtosecond pulses through self-action of the powerful wave packets in optical fibers: experiments.
  • p. 199
  • 7.3.
  • Non-linear dynamics of multi-soliton pulse propagation through single-mode optical fibers.
  • p. 209
  • 7.4.
  • Non-linear dynamics of Raman solitons in optical fiber theory.
  • p. 212
  • 7.5.
  • Conclusion.
  • p. 259
  • References.
  • p. 261
  • 8.
  • Generation and compression of femtosecond solitons in optical fibers/
  • P. V. Mamyshev
  • p. 266
  • 8.1.
  • Introduction.
  • p. 266
  • 8.2.
  • Raman self-scattering effect: generation of fundamental solitons using the Raman self-scattering of multi-soliton pulses.
  • p. 267
  • 8.3.
  • High-quality fundamental soliton compression and soliton pulsewidth stabilisation in fibers with slowly decreasing dispersion.
  • p. 282
  • 8.4.
  • Generation of a high-repetition-rate (up to THz range) train of practically non-interacting solitons.
  • p. 291
  • 8.5.
  • Generation of a stable high-repetition-rate train of practically non-interacting solitons from a c.w. signal by using the RSS and induced modulational instability effects.
  • p. 302
  • Acknowledgments.
  • p. 310
  • References.
  • p. 310
  • 9.
  • Optical fiber solitons in the presence of higher-order dispersion and birefringence/
  • Curtis R. Menyuk
  • Ping-Kong A. Wai
  • p. 314
  • 9.1.
  • Introduction.
  • p. 314
  • 9.2.
  • Coupled non-linear Schrodinger equation.
  • p. 316
  • 9.3.
  • Robustness of solitons.
  • p. 326
  • 9.4.
  • Higher-order dispersion.
  • p. 332
  • 9.5.
  • Linear birefringence.
  • p. 346
  • 9.6.
  • Axial inhomogeneity.
  • p. 359
  • 9.7.
  • Soliton switches.
  • p. 369
  • Acknowledgments.
  • p. 376
  • References.
  • p. 376
  • 10.
  • Dark optical solitons/
  • A. M. Weiner
  • p. 378
  • 10.1.
  • Introduction.
  • p. 378
  • 10.2.
  • Basic properties of dark optical solitons.
  • p. 379
  • 10.3.
  • Experimental verification of dark soliton propagation.
  • p. 390
  • 10.4.
  • Summary and outlook.
  • p. 405
  • Acknowledgement.
  • p. 407
  • References.
  • p. 407
  • 11.
  • Soliton-Raman effects/
  • J. R. Taylor
  • p. 409
  • 11.1.
  • Introduction.
  • p. 409
  • 11.2.
  • Modulational instability.
  • p. 410
  • 11.3.
  • Soliton-Raman generation.
  • p. 420
  • 11.4.
  • Raman amplification.
  • p. 436
  • 11.5.
  • Intra-pulse Raman scattering.
  • p. 440
  • 11.6.
  • Conclusion.
  • p. 444
  • Acknowledgment.
  • p. 445
  • References.
  • p. 445
  • Index.
  • p. 451
Control code
CR9780511524189
Extent
xv, 456 p.
Form of item
electronic
Isbn
9780521405485
Other physical details
ill.
Specific material designation
remote
Type of computer file
PDF.
Label
Optical solitons : theory and experiment, Edited by J. R. Taylor, (electronic book)
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • List of contributors
  • Preface
  • 1.
  • Optical solitons in fibers: theoretical review/
  • Akira Hasegawa
  • p. 1
  • 1.1.
  • Introduction.
  • p. 1
  • 1.2.
  • Derivation of the envelope equation for a light wave in a fiber.
  • p. 4
  • 1.3.
  • Properties of non-linear Schrodinger equation.
  • p. 14
  • 1.4.
  • Technical aspects of the design of optical soliton transmission systems.
  • p. 23
  • 1.5.
  • Summary and conclusion.
  • p. 28
  • References.
  • p. 28
  • 2.
  • Solitons in optical fibers: an experimental account/
  • L. F. Mollenauer
  • p. 30
  • 2.1.
  • Introduction.
  • p. 30
  • 2.2.
  • Dispersion, non-linearity and pulse narrowing in fibers.
  • p. 31
  • 2.3.
  • Experimental verification.
  • p. 36
  • 2.4.
  • soliton laser.
  • p. 38
  • 2.5.
  • Discovery of the soliton self-frequency shift.
  • p. 44
  • 2.6.
  • Experimental observation of interaction forces between solitons.
  • p. 48
  • 2.7.
  • Solitons in telecommunications.
  • p. 53
  • 2.8.
  • Conclusion.
  • p. 58
  • References.
  • p. 60
  • 3.
  • All-optical long-distance soliton-based transmission systems/
  • K. Smith
  • L. F. Mollenauer
  • p. 61
  • 3.1.
  • Introduction.
  • p. 61
  • 3.2.
  • Experimental investigation of long-distance soliton transmission.
  • p. 61
  • 3.3.
  • Further experiments.
  • p. 64
  • 3.4.
  • Conclusion.
  • p. 71
  • References.
  • p. 71
  • 4.
  • Non-linear propagation effects in optical fibres: numerical studies/
  • K. J. Blow
  • N. J. Doran
  • p. 73
  • 4.1.
  • Introduction.
  • p. 73
  • 4.2.
  • Solitons and inverse scattering theory.
  • p. 76
  • 4.3.
  • Numerical analysis.
  • p. 81
  • 4.4.
  • Initial value problems.
  • p. 84
  • 4.5.
  • Perturbations.
  • p. 88
  • 4.6.
  • Non-linear fibre devices and soliton switching.
  • p. 95
  • 4.7.
  • Conclusion.
  • p. 104
  • References.
  • p. 105
  • 5.
  • Soliton-soliton interactions/
  • C. Desem
  • P. L. Chu
  • p. 107
  • 5.1.
  • Introduction.
  • p. 107
  • 5.2.
  • Two-soliton interactions.
  • p. 108
  • 5.3.
  • Effect of higher-order dispersion on solitons.
  • p. 126
  • 5.4.
  • Soliton interaction in the presence of periodic amplification.
  • p. 133
  • 5.5.
  • Interaction among multiple solitons.
  • p. 140
  • References.
  • p. 151
  • 6.
  • Soliton amplification in erbium-doped fiber amplifiers and its application to soliton communication/
  • Masataka Nakazawa
  • p. 152
  • 6.1.
  • Introduction.
  • p. 152
  • 6.2.
  • General features of the erbium-doped fiber amplifier.
  • p. 153
  • 6.3.
  • Optical gain of erbium-doped fiber for picosecond high-power pulses.
  • p. 160
  • 6.4.
  • Single-wavelength soliton amplification and transmission.
  • p. 164
  • 6.5.
  • Dynamic range of the N = 1 solitons in a low-loss fiber.
  • p. 168
  • 6.6.
  • Multi-wavelength soliton amplification and transmission with collision.
  • p. 170
  • 6.7.
  • Subpicosecond soliton amplification.
  • p. 176
  • 6.8.
  • Femtosecond soliton amplification with adiabatic gain narrowing.
  • p. 179
  • 6.9.
  • GHz soliton generation using a gain-switched distributed feedback laser diode with spectral windowing.
  • p. 182
  • 6.10.
  • Soliton amplification in an ultralong distributed erbium-doped fiber amplifier.
  • p. 185
  • 6.11.
  • Dynamic soliton communication at 5-10 Gbit/s.
  • p. 189
  • 6.12.
  • Summary.
  • p. 195
  • References.
  • p. 195
  • V. N. Serkin
  • p. 197
  • 7.
  • Non-linear transformation of laser radiation and generation of Raman solitons in optical fibers/
  • E. M. Dianov
  • A. B. Grudinin
  • A. M. Prokhorov
  • 7.1.
  • Introduction.
  • p. 197
  • 7.2.
  • Formation of femtosecond pulses through self-action of the powerful wave packets in optical fibers: experiments.
  • p. 199
  • 7.3.
  • Non-linear dynamics of multi-soliton pulse propagation through single-mode optical fibers.
  • p. 209
  • 7.4.
  • Non-linear dynamics of Raman solitons in optical fiber theory.
  • p. 212
  • 7.5.
  • Conclusion.
  • p. 259
  • References.
  • p. 261
  • 8.
  • Generation and compression of femtosecond solitons in optical fibers/
  • P. V. Mamyshev
  • p. 266
  • 8.1.
  • Introduction.
  • p. 266
  • 8.2.
  • Raman self-scattering effect: generation of fundamental solitons using the Raman self-scattering of multi-soliton pulses.
  • p. 267
  • 8.3.
  • High-quality fundamental soliton compression and soliton pulsewidth stabilisation in fibers with slowly decreasing dispersion.
  • p. 282
  • 8.4.
  • Generation of a high-repetition-rate (up to THz range) train of practically non-interacting solitons.
  • p. 291
  • 8.5.
  • Generation of a stable high-repetition-rate train of practically non-interacting solitons from a c.w. signal by using the RSS and induced modulational instability effects.
  • p. 302
  • Acknowledgments.
  • p. 310
  • References.
  • p. 310
  • 9.
  • Optical fiber solitons in the presence of higher-order dispersion and birefringence/
  • Curtis R. Menyuk
  • Ping-Kong A. Wai
  • p. 314
  • 9.1.
  • Introduction.
  • p. 314
  • 9.2.
  • Coupled non-linear Schrodinger equation.
  • p. 316
  • 9.3.
  • Robustness of solitons.
  • p. 326
  • 9.4.
  • Higher-order dispersion.
  • p. 332
  • 9.5.
  • Linear birefringence.
  • p. 346
  • 9.6.
  • Axial inhomogeneity.
  • p. 359
  • 9.7.
  • Soliton switches.
  • p. 369
  • Acknowledgments.
  • p. 376
  • References.
  • p. 376
  • 10.
  • Dark optical solitons/
  • A. M. Weiner
  • p. 378
  • 10.1.
  • Introduction.
  • p. 378
  • 10.2.
  • Basic properties of dark optical solitons.
  • p. 379
  • 10.3.
  • Experimental verification of dark soliton propagation.
  • p. 390
  • 10.4.
  • Summary and outlook.
  • p. 405
  • Acknowledgement.
  • p. 407
  • References.
  • p. 407
  • 11.
  • Soliton-Raman effects/
  • J. R. Taylor
  • p. 409
  • 11.1.
  • Introduction.
  • p. 409
  • 11.2.
  • Modulational instability.
  • p. 410
  • 11.3.
  • Soliton-Raman generation.
  • p. 420
  • 11.4.
  • Raman amplification.
  • p. 436
  • 11.5.
  • Intra-pulse Raman scattering.
  • p. 440
  • 11.6.
  • Conclusion.
  • p. 444
  • Acknowledgment.
  • p. 445
  • References.
  • p. 445
  • Index.
  • p. 451
Control code
CR9780511524189
Extent
xv, 456 p.
Form of item
electronic
Isbn
9780521405485
Other physical details
ill.
Specific material designation
remote
Type of computer file
PDF.

Library Locations

Processing Feedback ...