Coverart for item
The Resource Philosophy of mathematics : an anthology, edited by Dale Jacquette

Philosophy of mathematics : an anthology, edited by Dale Jacquette

Label
Philosophy of mathematics : an anthology
Title
Philosophy of mathematics
Title remainder
an anthology
Statement of responsibility
edited by Dale Jacquette
Contributor
Subject
Language
eng
Cataloging source
DLC
Index
index present
http://library.link/vocab/relatedWorkOrContributorName
Jacquette, Dale
Series statement
Blackwell philosophy anthologies
Series volume
15
http://library.link/vocab/subjectName
Mathematics
Label
Philosophy of mathematics : an anthology, edited by Dale Jacquette
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Preface
  • Acknowledgments
  • Introduction: Mathematics and Philosophy of Mathematics/
  • Dale Jacquette
  • p. 1
  • Part I.
  • Realm of Mathematics
  • Introduction to Part I.
  • p. 13
  • 1.
  • What is Mathematics About?/
  • Michael Dummett
  • p. 19
  • 2.
  • Mathematical Explanation/
  • Mark Steiner
  • p. 30
  • 3.
  • Frege versus Cantor and Dedekind: On the Concept of Number/
  • William W. Tait
  • p. 40
  • 4.
  • Present Situation in the Philosophy of Mathematics/
  • Henry Mehlberg
  • p. 65
  • Part II.
  • Ontology of Mathematics and the Nature and Knowledge of Mathematical Truth
  • Introduction to Part II.
  • p. 85
  • 5.
  • What Numbers Are/
  • N. P. White
  • p. 91
  • 6.
  • Mathematical Truth/
  • Paul Benacerraf
  • p. 99
  • 7.
  • Ontology and Mathematical Truth/
  • Michael Jubien
  • p. 110
  • 8.
  • Anti-realist Account of Mathematical Truth/
  • Graham Priest
  • p. 119
  • 9.
  • What Mathematical Knowledge Could Be/
  • Jerrold J. Katz
  • p. 128
  • 10.
  • Philosophical Basis of Our Knowledge of Number/
  • William Demopoulos
  • p. 147
  • Part III.
  • Models and Methods of Mathematical Proof
  • Introduction to Part III.
  • p. 165
  • 11.
  • Mathematical Proof/
  • G. H. Hardy
  • p. 173
  • 12.
  • What Does a Mathematical Proof Prove?/
  • Imre Lakatos
  • p. 187
  • 13.
  • Four-Color Problem/
  • Kenneth Appel
  • Wolfgang Haken
  • p. 193
  • 14.
  • Knowledge of Proofs/
  • Peter Paign
  • p. 209
  • 15.
  • Phenomenology of Mathematical Proof/
  • Gian-Carlo Rota
  • p. 218
  • 16.
  • Mechanical Procedures and Mathematical Experience/
  • Wilfried Sieg
  • p. 226
  • Part IV.
  • Intuitionism
  • Introduction to Part IV.
  • p. 261
  • 17.
  • Intuitionism and Formalism/
  • L. E. J. Brouwer
  • p. 269
  • 18.
  • Mathematical Intuition/
  • Charles Parsons
  • p. 277
  • 19.
  • Brouwerian Intuitionism/
  • Michael Detlefsen
  • p. 289
  • 20.
  • Problem for Intuitionism: The Apparent Possibility of Performing Infinitely Many Tasks in a Finite Time/
  • A. W. Moore
  • p. 312
  • 21.
  • Pragmatic Analysis of Mathematical Realism and Intuitionism/
  • Michel J. Blais
  • p. 322
  • Part V.
  • Philosophical Foundations of Set Theory
  • Introduction to Part V.
  • p. 337
  • 22.
  • Sets and Numbers/
  • Penelope Maddy
  • p. 345
  • 23.
  • Sets, Aggregates, and Numbers/
  • Palle Yourgrau
  • p. 355
  • 24.
  • Approaches to Set Theory/
  • John Lake
  • p. 362
  • 25.
  • Where Do Sets Come From?/
  • Harold T. Hodes
  • p. 377
  • 26.
  • Conceptual Schemes in Set Theory/
  • Robert McNaughton
  • p. 396
  • 27.
  • What is Required of a Foundation for Mathematics?/
  • John Mayberry
  • p. 404
  • Index.
  • p. 417
Control code
JPKGTT00174297-B
Dimensions
25 cm.
Extent
xii, 428 p.
Isbn
9780631218708
Lccn
2001018136
Other control number
9780631218708
Label
Philosophy of mathematics : an anthology, edited by Dale Jacquette
Publication
Bibliography note
Includes bibliographical references and index
Contents
  • Preface
  • Acknowledgments
  • Introduction: Mathematics and Philosophy of Mathematics/
  • Dale Jacquette
  • p. 1
  • Part I.
  • Realm of Mathematics
  • Introduction to Part I.
  • p. 13
  • 1.
  • What is Mathematics About?/
  • Michael Dummett
  • p. 19
  • 2.
  • Mathematical Explanation/
  • Mark Steiner
  • p. 30
  • 3.
  • Frege versus Cantor and Dedekind: On the Concept of Number/
  • William W. Tait
  • p. 40
  • 4.
  • Present Situation in the Philosophy of Mathematics/
  • Henry Mehlberg
  • p. 65
  • Part II.
  • Ontology of Mathematics and the Nature and Knowledge of Mathematical Truth
  • Introduction to Part II.
  • p. 85
  • 5.
  • What Numbers Are/
  • N. P. White
  • p. 91
  • 6.
  • Mathematical Truth/
  • Paul Benacerraf
  • p. 99
  • 7.
  • Ontology and Mathematical Truth/
  • Michael Jubien
  • p. 110
  • 8.
  • Anti-realist Account of Mathematical Truth/
  • Graham Priest
  • p. 119
  • 9.
  • What Mathematical Knowledge Could Be/
  • Jerrold J. Katz
  • p. 128
  • 10.
  • Philosophical Basis of Our Knowledge of Number/
  • William Demopoulos
  • p. 147
  • Part III.
  • Models and Methods of Mathematical Proof
  • Introduction to Part III.
  • p. 165
  • 11.
  • Mathematical Proof/
  • G. H. Hardy
  • p. 173
  • 12.
  • What Does a Mathematical Proof Prove?/
  • Imre Lakatos
  • p. 187
  • 13.
  • Four-Color Problem/
  • Kenneth Appel
  • Wolfgang Haken
  • p. 193
  • 14.
  • Knowledge of Proofs/
  • Peter Paign
  • p. 209
  • 15.
  • Phenomenology of Mathematical Proof/
  • Gian-Carlo Rota
  • p. 218
  • 16.
  • Mechanical Procedures and Mathematical Experience/
  • Wilfried Sieg
  • p. 226
  • Part IV.
  • Intuitionism
  • Introduction to Part IV.
  • p. 261
  • 17.
  • Intuitionism and Formalism/
  • L. E. J. Brouwer
  • p. 269
  • 18.
  • Mathematical Intuition/
  • Charles Parsons
  • p. 277
  • 19.
  • Brouwerian Intuitionism/
  • Michael Detlefsen
  • p. 289
  • 20.
  • Problem for Intuitionism: The Apparent Possibility of Performing Infinitely Many Tasks in a Finite Time/
  • A. W. Moore
  • p. 312
  • 21.
  • Pragmatic Analysis of Mathematical Realism and Intuitionism/
  • Michel J. Blais
  • p. 322
  • Part V.
  • Philosophical Foundations of Set Theory
  • Introduction to Part V.
  • p. 337
  • 22.
  • Sets and Numbers/
  • Penelope Maddy
  • p. 345
  • 23.
  • Sets, Aggregates, and Numbers/
  • Palle Yourgrau
  • p. 355
  • 24.
  • Approaches to Set Theory/
  • John Lake
  • p. 362
  • 25.
  • Where Do Sets Come From?/
  • Harold T. Hodes
  • p. 377
  • 26.
  • Conceptual Schemes in Set Theory/
  • Robert McNaughton
  • p. 396
  • 27.
  • What is Required of a Foundation for Mathematics?/
  • John Mayberry
  • p. 404
  • Index.
  • p. 417
Control code
JPKGTT00174297-B
Dimensions
25 cm.
Extent
xii, 428 p.
Isbn
9780631218708
Lccn
2001018136
Other control number
9780631218708

Library Locations

    • Sydney Jones LibraryBorrow it
      Chatham Street, Liverpool, L7 7BD, GB
      53.403069 -2.963723
Processing Feedback ...