The Resource Quantum linear groups
Quantum linear groups
Resource Information
The item Quantum linear groups represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Quantum linear groups represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- We consider the theory of quantum groups as a natural abstraction of the theory of affine group schemes. After establishing the foundational results as the theory of induced representations, rational cohomology, and the Hochschild-Serre spectral sequence, we take up a detailed investigation of the quantum linear group [italic]GL[italic subscript]q([italic]n). In particular, we develop the global and infinitesimal representation theory of [italic]GL[italic subscript]q([italic]n) and its subgroups
- Language
- eng
- Extent
- vi, 157 pages
- Contents
-
- Global representation theory
- Infinitesimal representation theory
- The generalization of certain important theorems on the cohomology of vector bundles on the flag manifold - [italic]q-Schur algebras
- Introduction
- Quantum groups
- Representation theory of quantum groups
- Quantum matrix spaces
- Quantum determinants
- The antipode and quantum linear groups
- Some closed subgroups
- Frobenius morphisms and kernels
- Isbn
- 9780821825013
- Label
- Quantum linear groups
- Title
- Quantum linear groups
- Language
- eng
- Summary
- We consider the theory of quantum groups as a natural abstraction of the theory of affine group schemes. After establishing the foundational results as the theory of induced representations, rational cohomology, and the Hochschild-Serre spectral sequence, we take up a detailed investigation of the quantum linear group [italic]GL[italic subscript]q([italic]n). In particular, we develop the global and infinitesimal representation theory of [italic]GL[italic subscript]q([italic]n) and its subgroups
- Cataloging source
- UkLiU
- http://library.link/vocab/creatorDate
- 1945-
- http://library.link/vocab/creatorName
- Parshall, Brian
- http://library.link/vocab/relatedWorkOrContributorDate
- 1949-
- http://library.link/vocab/relatedWorkOrContributorName
- Wang, Jian-pan
- Series statement
- Memoirs of the American Mathematical Society
- Series volume
- 439
- http://library.link/vocab/subjectName
-
- Linear algebraic groups
- Representations of groups
- Group schemes (Mathematics)
- Label
- Quantum linear groups
- Bibliography note
- Includes bibliographical references (pages 155-157)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Global representation theory
- Infinitesimal representation theory
- The generalization of certain important theorems on the cohomology of vector bundles on the flag manifold - [italic]q-Schur algebras
- Introduction
- Quantum groups
- Representation theory of quantum groups
- Quantum matrix spaces
- Quantum determinants
- The antipode and quantum linear groups
- Some closed subgroups
- Frobenius morphisms and kernels
- Dimensions
- 26 cm.
- Extent
- vi, 157 pages
- Isbn
- 9780821825013
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
- Label
- Quantum linear groups
- Bibliography note
- Includes bibliographical references (pages 155-157)
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Global representation theory
- Infinitesimal representation theory
- The generalization of certain important theorems on the cohomology of vector bundles on the flag manifold - [italic]q-Schur algebras
- Introduction
- Quantum groups
- Representation theory of quantum groups
- Quantum matrix spaces
- Quantum determinants
- The antipode and quantum linear groups
- Some closed subgroups
- Frobenius morphisms and kernels
- Dimensions
- 26 cm.
- Extent
- vi, 157 pages
- Isbn
- 9780821825013
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- illustrations
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Quantum-linear-groups/1WPcvUh1Cxk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Quantum-linear-groups/1WPcvUh1Cxk/">Quantum linear groups</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Quantum linear groups
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Quantum-linear-groups/1WPcvUh1Cxk/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Quantum-linear-groups/1WPcvUh1Cxk/">Quantum linear groups</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>