The Resource Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps
Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps
Resource Information
The item Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.--
- Language
- eng
- Extent
- 1 online resource.
- Contents
-
- Chapter 1- Mathematical background
- Chapter 2- Grassmann algebra
- Chapter 3- Geometric Algebra
- Chapter 4- Orthogonal geometry with GA
- Chapter 5- Zooming in on rotor groups
- Chapter 6- Postfaces
- References
- Isbn
- 9783030004040
- Label
- Real spinorial groups : a short mathematical introduction
- Title
- Real spinorial groups
- Title remainder
- a short mathematical introduction
- Statement of responsibility
- Sebastià Xambó-Descamps
- Language
- eng
- Summary
- This book explores the Lipschitz spinorial groups (versor, pinor, spinor and rotor groups) of a real non-degenerate orthogonal geometry (or orthogonal geometry, for short) and how they relate to the group of isometries of that geometry. After a concise mathematical introduction, it offers an axiomatic presentation of the geometric algebra of an orthogonal geometry. Once it has established the language of geometric algebra (linear grading of the algebra; geometric, exterior and interior products; involutions), it defines the spinorial groups, demonstrates their relation to the isometry groups, and illustrates their suppleness (geometric covariance) with a variety of examples. Lastly, the book provides pointers to major applications, an extensive bibliography and an alphabetic index. Combining the characteristics of a self-contained research monograph and a state-of-the-art survey, this book is a valuable foundation reference resource on applications for both undergraduate and graduate students.--
- Assigning source
- Provided by publisher
- Cataloging source
- N$T
- http://library.link/vocab/creatorDate
- 1945-
- http://library.link/vocab/creatorName
- Xambó-Descamps, S.
- Dewey number
- 516.35
- Index
- no index present
- LC call number
- QA564
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- SpringerBriefs in mathematics
- http://library.link/vocab/subjectName
-
- Spinor analysis
- Clifford algebras
- Geometry, Algebraic
- Orthogonalization methods
- Label
- Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Chapter 1- Mathematical background -- Chapter 2- Grassmann algebra -- Chapter 3- Geometric Algebra -- Chapter 4- Orthogonal geometry with GA -- Chapter 5- Zooming in on rotor groups -- Chapter 6- Postfaces -- References
- Dimensions
- unknown
- Extent
- 1 online resource.
- File format
- unknown
- Form of item
- online
- Isbn
- 9783030004040
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
-
- on1076543325
- (OCoLC)1076543325
- Label
- Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
- Chapter 1- Mathematical background -- Chapter 2- Grassmann algebra -- Chapter 3- Geometric Algebra -- Chapter 4- Orthogonal geometry with GA -- Chapter 5- Zooming in on rotor groups -- Chapter 6- Postfaces -- References
- Dimensions
- unknown
- Extent
- 1 online resource.
- File format
- unknown
- Form of item
- online
- Isbn
- 9783030004040
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Quality assurance targets
- not applicable
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
-
- on1076543325
- (OCoLC)1076543325
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Real-spinorial-groups--a-short-mathematical/CxrVjqJbSwQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Real-spinorial-groups--a-short-mathematical/CxrVjqJbSwQ/">Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Real-spinorial-groups--a-short-mathematical/CxrVjqJbSwQ/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Real-spinorial-groups--a-short-mathematical/CxrVjqJbSwQ/">Real spinorial groups : a short mathematical introduction, Sebastià Xambó-Descamps</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>