The Resource Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)
Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)
Resource Information
The item Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- Digital Watermarking is the art and science of embedding information in existing digital content for Digital Rights Management (DRM) and authentication. Reversible watermarking is a class of (fragile) digital watermarking that not only authenticates multimedia data content, but also helps to maintain perfect integrity of the original multimedia "cover data." In non-reversible watermarking schemes, after embedding and extraction of the watermark, the cover data undergoes some distortions, although perceptually negligible in most cases. In contrast, in reversible watermarking, zero-distortion of the cover data is achieved, that is the cover data is guaranteed to be restored bit-by-bit. Such a feature is desirable when highly sensitive data is watermarked, e.g., in military, medical and legal imaging applications. This work deals with development, analysis and evaluation of state-of-the-art reversible watermarking techniques for digital images. In this work we establish the motivation for research on reversible watermarking using a couple of case studies with medical and military images.We present a detailed review of the state-of-the-art research in this field.We investigate the various subclasses of reversible watermarking algorithms, their operating principles and computational complexities. Along with this, to give the readers an idea about the detailed working of a reversible watermarking scheme, we present a prediction-based reversible watermarking technique, recently published by us.We discuss the major issues and challenges behind implementation of reversible watermarking techniques, and recently proposed solutions for them. Finally, we provide an overview of some open problems and scope of work for future researchers in this area
- Language
- eng
- Extent
- 1 PDF (xxiii, 106 pages)
- Contents
-
- 1. Introduction -- 1.1 Digital watermarking -- 1.2 Fragile and robust watermarking techniques -- 1.3 Reversible digital watermarking -- 1.3.1 Importance of reversible watermarking --
- 2. Motivational case studies -- 2.1 Investigating the effects of DRM practices on medical images -- 2.1.1 Background -- 2.1.2 Methodology -- 2.1.3 Results -- 2.1.4 Inferences: effect of lossy watermarking scheme on automated malaria diagnosis -- 2.2 Investigating performance in noisy military environment -- 2.2.1 Experimental setup and simulation results -- 2.2.2 Discussion -- 2.2.3 Summary --
- 3. Overview of state-of-the-art reversible watermarking techniques -- 3.1 Introduction -- 3.2 Difference expansion -- 3.3 Data compression -- 3.4 Histogram-bin-shifting -- 3.4.1 Circular histogram-bin-shifting -- 3.5 Pixel prediction -- 3.5.1 A recent reversible data hiding technique based on pixel prediction -- 3.6 Modification of frequency domain characteristics -- 3.7 Summary --
- 4. Detailed working of a reversible watermarking algorithm: a technique utilizing weighted median-based prediction -- 4.1 Introduction -- 4.2 Watermark embedding algorithm -- 4.2.1 Selection of base pixels -- 4.2.2 Predicting three sets of pixels -- 4.2.3 Computing prediction errors -- 4.2.4 Embedding watermark bits -- 4.2.5 Combining modified errors with predicted pixels -- 4.3 Watermark extraction algorithm -- 4.3.1 Handling of under/overflow -- 4.4 Overhead bits -- 4.5 Varying the error threshold -- 4.6 Experimental results -- 4.6.1 Application to medical and military images -- 4.6.2 Varying the weights of a weighted-median filter -- 4.7 Summary --
- 5. Addressing implementation issues -- 5.1 Managing auxiliary information -- 5.2 Optimizing false pixel rejection rate -- 5.3 Optimizing runtime requirements -- 5.4 Development of a common evaluation platform -- 5.4.1 Working methodology -- 5.4.2 Viewing plots generated in the past -- 5.5 Summary --
- 6. Reversible watermarking with tamper localization property -- 6.1 Introduction -- 6.2 Necessary background -- 6.3 Tamper localization in reversible watermarking -- 6.3.1 Bound on tamper localization block size -- 6.4 The method of tamper localization -- 6.4.1 Merging of tamper localization unit blocks -- 6.4.2 An application -- 6.4.3 False rejection as a consequence of block merging -- 6.5 Experimental results and discussion -- 6.5.1 Robustness against false rejection -- 6.5.2 Watermark transparency and embedding capacity results -- 6.6 Summary --
- 7. Looking forward -- Bibliography -- Authors' biographies
- Isbn
- 9781627053167
- Label
- Reversible digital watermarking : theory and practices
- Title
- Reversible digital watermarking
- Title remainder
- theory and practices
- Statement of responsibility
- Ruchira Naskar, Rajat Subhra Chakraborty
- Language
- eng
- Summary
- Digital Watermarking is the art and science of embedding information in existing digital content for Digital Rights Management (DRM) and authentication. Reversible watermarking is a class of (fragile) digital watermarking that not only authenticates multimedia data content, but also helps to maintain perfect integrity of the original multimedia "cover data." In non-reversible watermarking schemes, after embedding and extraction of the watermark, the cover data undergoes some distortions, although perceptually negligible in most cases. In contrast, in reversible watermarking, zero-distortion of the cover data is achieved, that is the cover data is guaranteed to be restored bit-by-bit. Such a feature is desirable when highly sensitive data is watermarked, e.g., in military, medical and legal imaging applications. This work deals with development, analysis and evaluation of state-of-the-art reversible watermarking techniques for digital images. In this work we establish the motivation for research on reversible watermarking using a couple of case studies with medical and military images.We present a detailed review of the state-of-the-art research in this field.We investigate the various subclasses of reversible watermarking algorithms, their operating principles and computational complexities. Along with this, to give the readers an idea about the detailed working of a reversible watermarking scheme, we present a prediction-based reversible watermarking technique, recently published by us.We discuss the major issues and challenges behind implementation of reversible watermarking techniques, and recently proposed solutions for them. Finally, we provide an overview of some open problems and scope of work for future researchers in this area
- Cataloging source
- CaBNVSL
- http://library.link/vocab/creatorName
- Naskar, Ruchira
- Dewey number
- 005.8
- Illustrations
- illustrations
- Index
- no index present
- LC call number
- QA76.9.A25
- LC item number
- N277 2014
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- abstracts summaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorName
- Chakraborty, Rajat Subhra
- http://library.link/vocab/subjectName
-
- Digital watermarking
- Digital rights management
- Target audience
-
- adult
- specialized
- Label
- Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)
- Bibliography note
- Includes bibliographical references (pages 99-104)
- Carrier category
- online resource
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type MARC source
- rdacontent
- Contents
-
- 1. Introduction -- 1.1 Digital watermarking -- 1.2 Fragile and robust watermarking techniques -- 1.3 Reversible digital watermarking -- 1.3.1 Importance of reversible watermarking --
- 2. Motivational case studies -- 2.1 Investigating the effects of DRM practices on medical images -- 2.1.1 Background -- 2.1.2 Methodology -- 2.1.3 Results -- 2.1.4 Inferences: effect of lossy watermarking scheme on automated malaria diagnosis -- 2.2 Investigating performance in noisy military environment -- 2.2.1 Experimental setup and simulation results -- 2.2.2 Discussion -- 2.2.3 Summary --
- 3. Overview of state-of-the-art reversible watermarking techniques -- 3.1 Introduction -- 3.2 Difference expansion -- 3.3 Data compression -- 3.4 Histogram-bin-shifting -- 3.4.1 Circular histogram-bin-shifting -- 3.5 Pixel prediction -- 3.5.1 A recent reversible data hiding technique based on pixel prediction -- 3.6 Modification of frequency domain characteristics -- 3.7 Summary --
- 4. Detailed working of a reversible watermarking algorithm: a technique utilizing weighted median-based prediction -- 4.1 Introduction -- 4.2 Watermark embedding algorithm -- 4.2.1 Selection of base pixels -- 4.2.2 Predicting three sets of pixels -- 4.2.3 Computing prediction errors -- 4.2.4 Embedding watermark bits -- 4.2.5 Combining modified errors with predicted pixels -- 4.3 Watermark extraction algorithm -- 4.3.1 Handling of under/overflow -- 4.4 Overhead bits -- 4.5 Varying the error threshold -- 4.6 Experimental results -- 4.6.1 Application to medical and military images -- 4.6.2 Varying the weights of a weighted-median filter -- 4.7 Summary --
- 5. Addressing implementation issues -- 5.1 Managing auxiliary information -- 5.2 Optimizing false pixel rejection rate -- 5.3 Optimizing runtime requirements -- 5.4 Development of a common evaluation platform -- 5.4.1 Working methodology -- 5.4.2 Viewing plots generated in the past -- 5.5 Summary --
- 6. Reversible watermarking with tamper localization property -- 6.1 Introduction -- 6.2 Necessary background -- 6.3 Tamper localization in reversible watermarking -- 6.3.1 Bound on tamper localization block size -- 6.4 The method of tamper localization -- 6.4.1 Merging of tamper localization unit blocks -- 6.4.2 An application -- 6.4.3 False rejection as a consequence of block merging -- 6.5 Experimental results and discussion -- 6.5.1 Robustness against false rejection -- 6.5.2 Watermark transparency and embedding capacity results -- 6.6 Summary --
- 7. Looking forward -- Bibliography -- Authors' biographies
- Control code
- 201401SPT010
- Dimensions
- unknown
- Extent
- 1 PDF (xxiii, 106 pages)
- File format
- multiple file formats
- Form of item
- online
- Isbn
- 9781627053167
- Issn
- 1945-9750
- Media category
- electronic
- Media MARC source
- isbdmedia
- Other control number
- 10.2200/S00567ED1V01Y201401SPT010
- Other physical details
- illustrations.
- Reformatting quality
- access
- Specific material designation
- remote
- System details
- System requirements: Adobe Acrobat Reader
- Label
- Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)
- Bibliography note
- Includes bibliographical references (pages 99-104)
- Carrier category
- online resource
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type MARC source
- rdacontent
- Contents
-
- 1. Introduction -- 1.1 Digital watermarking -- 1.2 Fragile and robust watermarking techniques -- 1.3 Reversible digital watermarking -- 1.3.1 Importance of reversible watermarking --
- 2. Motivational case studies -- 2.1 Investigating the effects of DRM practices on medical images -- 2.1.1 Background -- 2.1.2 Methodology -- 2.1.3 Results -- 2.1.4 Inferences: effect of lossy watermarking scheme on automated malaria diagnosis -- 2.2 Investigating performance in noisy military environment -- 2.2.1 Experimental setup and simulation results -- 2.2.2 Discussion -- 2.2.3 Summary --
- 3. Overview of state-of-the-art reversible watermarking techniques -- 3.1 Introduction -- 3.2 Difference expansion -- 3.3 Data compression -- 3.4 Histogram-bin-shifting -- 3.4.1 Circular histogram-bin-shifting -- 3.5 Pixel prediction -- 3.5.1 A recent reversible data hiding technique based on pixel prediction -- 3.6 Modification of frequency domain characteristics -- 3.7 Summary --
- 4. Detailed working of a reversible watermarking algorithm: a technique utilizing weighted median-based prediction -- 4.1 Introduction -- 4.2 Watermark embedding algorithm -- 4.2.1 Selection of base pixels -- 4.2.2 Predicting three sets of pixels -- 4.2.3 Computing prediction errors -- 4.2.4 Embedding watermark bits -- 4.2.5 Combining modified errors with predicted pixels -- 4.3 Watermark extraction algorithm -- 4.3.1 Handling of under/overflow -- 4.4 Overhead bits -- 4.5 Varying the error threshold -- 4.6 Experimental results -- 4.6.1 Application to medical and military images -- 4.6.2 Varying the weights of a weighted-median filter -- 4.7 Summary --
- 5. Addressing implementation issues -- 5.1 Managing auxiliary information -- 5.2 Optimizing false pixel rejection rate -- 5.3 Optimizing runtime requirements -- 5.4 Development of a common evaluation platform -- 5.4.1 Working methodology -- 5.4.2 Viewing plots generated in the past -- 5.5 Summary --
- 6. Reversible watermarking with tamper localization property -- 6.1 Introduction -- 6.2 Necessary background -- 6.3 Tamper localization in reversible watermarking -- 6.3.1 Bound on tamper localization block size -- 6.4 The method of tamper localization -- 6.4.1 Merging of tamper localization unit blocks -- 6.4.2 An application -- 6.4.3 False rejection as a consequence of block merging -- 6.5 Experimental results and discussion -- 6.5.1 Robustness against false rejection -- 6.5.2 Watermark transparency and embedding capacity results -- 6.6 Summary --
- 7. Looking forward -- Bibliography -- Authors' biographies
- Control code
- 201401SPT010
- Dimensions
- unknown
- Extent
- 1 PDF (xxiii, 106 pages)
- File format
- multiple file formats
- Form of item
- online
- Isbn
- 9781627053167
- Issn
- 1945-9750
- Media category
- electronic
- Media MARC source
- isbdmedia
- Other control number
- 10.2200/S00567ED1V01Y201401SPT010
- Other physical details
- illustrations.
- Reformatting quality
- access
- Specific material designation
- remote
- System details
- System requirements: Adobe Acrobat Reader
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Reversible-digital-watermarking--theory-and/j9A51wAQcrU/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Reversible-digital-watermarking--theory-and/j9A51wAQcrU/">Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Reversible-digital-watermarking--theory-and/j9A51wAQcrU/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Reversible-digital-watermarking--theory-and/j9A51wAQcrU/">Reversible digital watermarking : theory and practices, Ruchira Naskar, Rajat Subhra Chakraborty, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>