Coverart for item
The Resource Signal processing and machine learning for brain-machine interfaces, edited by Toshihisa Tanaka and Mahnaz Arvaneh

Signal processing and machine learning for brain-machine interfaces, edited by Toshihisa Tanaka and Mahnaz Arvaneh

Label
Signal processing and machine learning for brain-machine interfaces
Title
Signal processing and machine learning for brain-machine interfaces
Statement of responsibility
edited by Toshihisa Tanaka and Mahnaz Arvaneh
Contributor
Editor
Subject
Language
eng
Summary
Brain-machine interfacing or brain-computer interfacing (BMI/BCI) is an emerging and challenging technology used in engineering and neuroscience. The ultimate goal is to provide a pathway from the brain to the external world via mapping, assisting, augmenting or repairing human cognitive or sensory-motor functions. In this book an international panel of experts introduce signal processing and machine learning techniques for BMI/BCI and outline their practical and future applications in neuroscience, medicine, and rehabilitation, with a focus on EEG-based BMI/BCI methods and technologies. Topics covered include discriminative learning of connectivity pattern of EEG; feature extraction from EEG recordings; EEG signal processing; transfer learning algorithms in BCI; convolutional neural networks for event-related potential detection; spatial filtering techniques for improving individual template-based SSVEP detection; feature extraction and classification algorithms for image RSVP based BCI; decoding music perception and imagination using deep learning techniques; neurofeedback games using EEG-based Brain-Computer Interface Technology; affective computing system and more
Member of
Cataloging source
LGG
Dewey number
006.31
Index
index present
LC call number
QP360.7
LC item number
.S54 2018eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Arvaneh, Mahnaz
  • Tanaka, Toshihisa
http://library.link/vocab/subjectName
  • Brain-computer interfaces
  • Decoders (Electronics)
  • Electroencephalography
  • Medical technology
  • Signal processing
Label
Signal processing and machine learning for brain-machine interfaces, edited by Toshihisa Tanaka and Mahnaz Arvaneh
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Intro; Contents; Preface; 1. Brain-computer interfaces and electroencephalogram: basics and practical issues / Mahnaz Arvaneh and Toshihisa Tanaka; Abstract; 1.1 Introduction; 1.2 Core components of a BMI system; 1.3 Signal acquisition; 1.3.1 Electroencephalography; 1.3.2 Positron emission tomography; 1.3.3 Magnetoencephalography; 1.3.4 Functional magnetic resonance imaging; 1.3.5 Near-infrared spectroscopy; 1.3.6 Commonly used method in BMI-why EEG?; 1.4 Measurement of EEG; 1.4.1 Principle of EEG; 1.4.2 How to measure EEG; 1.4.3 Practical issues
  • 1.5 Neurophysiological signals in EEG for driving BMIs1.5.1 Evoked potentials; 1.5.2 Spontaneous signals; 1.6 Commonly used EEG processing methods in BMI; 1.6.1 Preprocessing; 1.6.2 Re-referencing; 1.6.3 Feature extraction; 1.6.4 Classification; 1.7 Feedback; 1.8 BMI applications; 1.9 Summary; References; 2. Discriminative learning of connectivity pattern of motor imagery EEG / Xinyang Li, Cuntai Guan, and Huijuan Yang; Abstract; 2.1 Introduction; 2.2 Discriminative learning of connectivity pattern of motor imagery EEG; 2.2.1 Spatial filter design for variance feature extraction
  • 2.2.2 Discriminative learning of connectivity pattern2.3 Experimental study; 2.3.1 Experimental setup and data processing; 2.3.2 Correlation results; 2.3.3 Classification results; 2.4 Relations with existing methods; 2.5 Conclusion; References; 3. An experimental study to compare CSP and TSM techniques to extract features during motor imagery tasks / Matteo Sartori, Simone Fiori, and Toshihisa Tanaka; Abstract; 3.1 Introduction; 3.2 Theoretical concepts and methods; 3.2.1 Averaging techniques of SCMs; 3.2.2 SCM averages in CSP and TSM methods; 3.2.3 Multidimensional scaling (MDS) algorithm
  • 3.3 Experimental results3.3.1 Classification accuracy; 3.3.2 SCMs distributions on tangent spaces; 3.4 Conclusions; References; 4. Robust EEG signal processing with signal structures / Hiroshi Higashi and Toshihisa Tanaka; Abstract; 4.1 Introduction; 4.2 Source analysis; 4.3 Regularization; 4.4 Filtering in graph spectral domain; 4.4.1 Graph Fourier transform; 4.4.2 Smoothing and dimensionality reduction by GFT; 4.4.3 Tangent space mapping from Riemannian manifold; 4.4.4 Smoothing on functional brain structures; 4.5 Conclusion; References
  • 5. A review on transfer learning approaches in brain-computer interface / Ahmed M. Azab, Jake Toth, Lyudmila S. Mihaylova, and Mahnaz ArvanehAbstract; 5.1 Introduction; 5.2 Transfer learning; 5.2.1 History of transfer learning; 5.2.2 Transfer learning definition; 5.2.3 Transfer learning categories; 5.3 Transfer learning approaches; 5.3.1 Instance-based transfer learning; 5.3.2 Feature-representation transfer learning; 5.3.3 Classifier-based transfer learning; 5.3.4 Relational-based transfer learning; 5.4 Transfer learning methods used in BCI; 5.4.1 Instance-based transfer learning in BCI
Dimensions
unknown
Extent
1 online resource
Form of item
online
Isbn
9781785613982
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
  • on1054199219
  • (OCoLC)1054199219
Label
Signal processing and machine learning for brain-machine interfaces, edited by Toshihisa Tanaka and Mahnaz Arvaneh
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Intro; Contents; Preface; 1. Brain-computer interfaces and electroencephalogram: basics and practical issues / Mahnaz Arvaneh and Toshihisa Tanaka; Abstract; 1.1 Introduction; 1.2 Core components of a BMI system; 1.3 Signal acquisition; 1.3.1 Electroencephalography; 1.3.2 Positron emission tomography; 1.3.3 Magnetoencephalography; 1.3.4 Functional magnetic resonance imaging; 1.3.5 Near-infrared spectroscopy; 1.3.6 Commonly used method in BMI-why EEG?; 1.4 Measurement of EEG; 1.4.1 Principle of EEG; 1.4.2 How to measure EEG; 1.4.3 Practical issues
  • 1.5 Neurophysiological signals in EEG for driving BMIs1.5.1 Evoked potentials; 1.5.2 Spontaneous signals; 1.6 Commonly used EEG processing methods in BMI; 1.6.1 Preprocessing; 1.6.2 Re-referencing; 1.6.3 Feature extraction; 1.6.4 Classification; 1.7 Feedback; 1.8 BMI applications; 1.9 Summary; References; 2. Discriminative learning of connectivity pattern of motor imagery EEG / Xinyang Li, Cuntai Guan, and Huijuan Yang; Abstract; 2.1 Introduction; 2.2 Discriminative learning of connectivity pattern of motor imagery EEG; 2.2.1 Spatial filter design for variance feature extraction
  • 2.2.2 Discriminative learning of connectivity pattern2.3 Experimental study; 2.3.1 Experimental setup and data processing; 2.3.2 Correlation results; 2.3.3 Classification results; 2.4 Relations with existing methods; 2.5 Conclusion; References; 3. An experimental study to compare CSP and TSM techniques to extract features during motor imagery tasks / Matteo Sartori, Simone Fiori, and Toshihisa Tanaka; Abstract; 3.1 Introduction; 3.2 Theoretical concepts and methods; 3.2.1 Averaging techniques of SCMs; 3.2.2 SCM averages in CSP and TSM methods; 3.2.3 Multidimensional scaling (MDS) algorithm
  • 3.3 Experimental results3.3.1 Classification accuracy; 3.3.2 SCMs distributions on tangent spaces; 3.4 Conclusions; References; 4. Robust EEG signal processing with signal structures / Hiroshi Higashi and Toshihisa Tanaka; Abstract; 4.1 Introduction; 4.2 Source analysis; 4.3 Regularization; 4.4 Filtering in graph spectral domain; 4.4.1 Graph Fourier transform; 4.4.2 Smoothing and dimensionality reduction by GFT; 4.4.3 Tangent space mapping from Riemannian manifold; 4.4.4 Smoothing on functional brain structures; 4.5 Conclusion; References
  • 5. A review on transfer learning approaches in brain-computer interface / Ahmed M. Azab, Jake Toth, Lyudmila S. Mihaylova, and Mahnaz ArvanehAbstract; 5.1 Introduction; 5.2 Transfer learning; 5.2.1 History of transfer learning; 5.2.2 Transfer learning definition; 5.2.3 Transfer learning categories; 5.3 Transfer learning approaches; 5.3.1 Instance-based transfer learning; 5.3.2 Feature-representation transfer learning; 5.3.3 Classifier-based transfer learning; 5.3.4 Relational-based transfer learning; 5.4 Transfer learning methods used in BCI; 5.4.1 Instance-based transfer learning in BCI
Dimensions
unknown
Extent
1 online resource
Form of item
online
Isbn
9781785613982
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
  • on1054199219
  • (OCoLC)1054199219

Library Locations

Processing Feedback ...