The Resource Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)
Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)
Resource Information
The item Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Extent
- 1 online resource (xiii, 277 p.)
- Contents
-
- Cover
- Contents
- I Preliminaries
- I.1 Metric Entropy
- I.2 Multiplicative Ergodic Theorem
- I.3 Inverse Limit Space
- II Margulis-Ruelle Inequality
- II. 1 Statement of the Theorem
- II. 2 Preliminaries
- II. 3 Proof of the Theorem
- III Expanding Maps
- III. 1 Main Results
- III. 2 Proof of Theorem III. 1.1
- III. 3 Basic Facts About Expanding Maps
- III. 4 Proofs of Theorems III. 1.2 and III. 1.3
- IV Axiom A Endomorphisms
- IV. 1 Introduction and Main Results
- IV. 2 Preliminaries
- IV. 3 Volume Lemma and the H246;lder Continuity of 966;u
- IV. 4 Equilibrium States of 966;u on 923;f
- IV. 5 Pesin8217;s Entropy Formula
- IV. 6 Large Ergodic Theorem and Proof of Main Theorems
- V Unstable and Stable Manifolds for Endomorphisms
- V.1 Preliminary Facts
- V.2 Fundamental Lemmas
- V.3 Some Technical Facts About Contracting Maps
- V.4 Local Unstable Manifolds
- V.5 Global Unstable Sets
- V.6 Local and Global Stable Manifolds
- V.7 H246;lder Continuity of Sub-bundles
- V.8 Absolute Continuity of Families of Submanifolds
- V.9 Absolute Continuity of Conditional Measures
- VI Pesin8217;s Entropy Formula for Endomorphisms
- VI. 1 Main Results
- VI. 2 Preliminaries
- VI. 3 Proof of Theorem VI. 1.1
- VII SRB Measures and Pesin8217;s Entropy Formula for Endomorphisms
- VII. 1 Formulation of the SRB Property and Main Results
- VII. 2 Technical Preparations for the Proof of the Main Result
- VII. 3 Proof of the Sufficiency for the Entropy Formula
- VII. 4 Lyapunov Charts
- VII. 5 Local Unstable Manifolds and Center Unstable Sets
- VII. 5.1 Local Unstable Manifolds and Center Unstable Sets
- VII. 5.2 Some Estimates
- VII. 5.3 Lipschitz Property of Unstable Subspaces within Center Unstable Sets
- VII. 6 Related Measurable Partitions
- VII. 6.1 Partitions Adapted to Lyapunov Charts
- VII. 6.2 More on Increasing Partitions
- VII. 6.3 Two Useful Partitions
- VII. 6.4 Quotient Structure
- VII. 6.5 Transverse Metrics
- VII. 7 Some Consequences of Besicovitch8217;s Covering Theorem
- VII. 8 The Main Proposition
- VII. 9 Proof of the Necessity for the Entropy Formula
- VII. 9.1 The Ergodic Case
- VII. 9.2 The General Case
- VIII Ergodic Property of Lyapunov Exponents
- VIII. 1 Introduction and Main Results
- VIII. 2 Lyapunov Exponents of Axiom A Attractors of Endomorphisms
- VIII. 3 Nonuniformly Completely Hyperbolic Attractors
- IX Generalized Entropy Formula
- IX. 1 Related Notions and Statements of the Main Results
- IX. 1.1 Pointwise Dimensions and Transverse Dimensions
- IX. 1.2 Statements of the Main Results
- IX. 2 Preliminaries
- IX. 2.1 Some Estimations on Unstable Manifolds
- IX. 2.2 Related Partitions
- IX. 2.3 Transverse Metrics on i(x)/- with 2iu
- IX. 2.4 Entropies of the Related Partitions
- IX. 3 Definitions of Local Entropies along Unstable Manifolds
- IX. 4 Estimates of Local Entropies along Unstable Manifolds
- IX. 4.1 Estimate of Local Entropy h
- IX. 4.2 Estimate of Local Entropy hi from Below with 2iu
- IX. 4.3 Estimate of Local Entropy hi from Above with 2iu
- IX. 5 The General Case: without Ergodic Assumption
- X Exact Dimensionality of Hyperbolic Measures
- X.1 Expanding Maps8217; Case8211;Proof of Theorem X.0.1
- X.2 Diffeomorphisms8217; Case8211;Proof
- Isbn
- 9783642019548
- Label
- Smooth ergodic theory for endomorphisms
- Title
- Smooth ergodic theory for endomorphisms
- Statement of responsibility
- Min Qian, Jian-Sheng Xie, Shu Zhu
- Language
- eng
- Cataloging source
- GW5XE
- http://library.link/vocab/creatorDate
- 1927-
- http://library.link/vocab/creatorName
- Qian, Min
- Dewey number
- 515.39
- Illustrations
- illustrations
- Index
- index present
- LC call number
- QA313
- LC item number
- .Q53 2009
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- http://library.link/vocab/relatedWorkOrContributorDate
- 1964-
- http://library.link/vocab/relatedWorkOrContributorName
-
- Xie, Jian-sheng
- Zhu, Shu
- Series statement
- Lecture notes in mathematics,
- Series volume
- 1978
- http://library.link/vocab/subjectName
-
- Ergodic theory
- Endomorphisms (Group theory)
- Dynamisches System
- Théorie ergodique
- Endomorphismes (Théorie des groupes)
- Label
- Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)
- Bibliography note
- Includes bibliographical references (p. 271-274) and index
- Color
- multicolored
- Contents
- Cover -- Contents -- I Preliminaries -- I.1 Metric Entropy -- I.2 Multiplicative Ergodic Theorem -- I.3 Inverse Limit Space -- II Margulis-Ruelle Inequality -- II. 1 Statement of the Theorem -- II. 2 Preliminaries -- II. 3 Proof of the Theorem -- III Expanding Maps -- III. 1 Main Results -- III. 2 Proof of Theorem III. 1.1 -- III. 3 Basic Facts About Expanding Maps -- III. 4 Proofs of Theorems III. 1.2 and III. 1.3 -- IV Axiom A Endomorphisms -- IV. 1 Introduction and Main Results -- IV. 2 Preliminaries -- IV. 3 Volume Lemma and the H246;lder Continuity of 966;u -- IV. 4 Equilibrium States of 966;u on 923;f -- IV. 5 Pesin8217;s Entropy Formula -- IV. 6 Large Ergodic Theorem and Proof of Main Theorems -- V Unstable and Stable Manifolds for Endomorphisms -- V.1 Preliminary Facts -- V.2 Fundamental Lemmas -- V.3 Some Technical Facts About Contracting Maps -- V.4 Local Unstable Manifolds -- V.5 Global Unstable Sets -- V.6 Local and Global Stable Manifolds -- V.7 H246;lder Continuity of Sub-bundles -- V.8 Absolute Continuity of Families of Submanifolds -- V.9 Absolute Continuity of Conditional Measures -- VI Pesin8217;s Entropy Formula for Endomorphisms -- VI. 1 Main Results -- VI. 2 Preliminaries -- VI. 3 Proof of Theorem VI. 1.1 -- VII SRB Measures and Pesin8217;s Entropy Formula for Endomorphisms -- VII. 1 Formulation of the SRB Property and Main Results -- VII. 2 Technical Preparations for the Proof of the Main Result -- VII. 3 Proof of the Sufficiency for the Entropy Formula -- VII. 4 Lyapunov Charts -- VII. 5 Local Unstable Manifolds and Center Unstable Sets -- VII. 5.1 Local Unstable Manifolds and Center Unstable Sets -- VII. 5.2 Some Estimates -- VII. 5.3 Lipschitz Property of Unstable Subspaces within Center Unstable Sets -- VII. 6 Related Measurable Partitions -- VII. 6.1 Partitions Adapted to Lyapunov Charts -- VII. 6.2 More on Increasing Partitions -- VII. 6.3 Two Useful Partitions -- VII. 6.4 Quotient Structure -- VII. 6.5 Transverse Metrics -- VII. 7 Some Consequences of Besicovitch8217;s Covering Theorem -- VII. 8 The Main Proposition -- VII. 9 Proof of the Necessity for the Entropy Formula -- VII. 9.1 The Ergodic Case -- VII. 9.2 The General Case -- VIII Ergodic Property of Lyapunov Exponents -- VIII. 1 Introduction and Main Results -- VIII. 2 Lyapunov Exponents of Axiom A Attractors of Endomorphisms -- VIII. 3 Nonuniformly Completely Hyperbolic Attractors -- IX Generalized Entropy Formula -- IX. 1 Related Notions and Statements of the Main Results -- IX. 1.1 Pointwise Dimensions and Transverse Dimensions -- IX. 1.2 Statements of the Main Results -- IX. 2 Preliminaries -- IX. 2.1 Some Estimations on Unstable Manifolds -- IX. 2.2 Related Partitions -- IX. 2.3 Transverse Metrics on i(x)/- with 2iu -- IX. 2.4 Entropies of the Related Partitions -- IX. 3 Definitions of Local Entropies along Unstable Manifolds -- IX. 4 Estimates of Local Entropies along Unstable Manifolds -- IX. 4.1 Estimate of Local Entropy h -- IX. 4.2 Estimate of Local Entropy hi from Below with 2iu -- IX. 4.3 Estimate of Local Entropy hi from Above with 2iu -- IX. 5 The General Case: without Ergodic Assumption -- X Exact Dimensionality of Hyperbolic Measures -- X.1 Expanding Maps8217; Case8211;Proof of Theorem X.0.1 -- X.2 Diffeomorphisms8217; Case8211;Proof
- Control code
- SPR656399529
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 277 p.)
- Form of item
- online
- Isbn
- 9783642019548
- Other control number
- 9786612655807
- Other physical details
- ill.
- Specific material designation
- remote
- Label
- Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)
- Bibliography note
- Includes bibliographical references (p. 271-274) and index
- Color
- multicolored
- Contents
- Cover -- Contents -- I Preliminaries -- I.1 Metric Entropy -- I.2 Multiplicative Ergodic Theorem -- I.3 Inverse Limit Space -- II Margulis-Ruelle Inequality -- II. 1 Statement of the Theorem -- II. 2 Preliminaries -- II. 3 Proof of the Theorem -- III Expanding Maps -- III. 1 Main Results -- III. 2 Proof of Theorem III. 1.1 -- III. 3 Basic Facts About Expanding Maps -- III. 4 Proofs of Theorems III. 1.2 and III. 1.3 -- IV Axiom A Endomorphisms -- IV. 1 Introduction and Main Results -- IV. 2 Preliminaries -- IV. 3 Volume Lemma and the H246;lder Continuity of 966;u -- IV. 4 Equilibrium States of 966;u on 923;f -- IV. 5 Pesin8217;s Entropy Formula -- IV. 6 Large Ergodic Theorem and Proof of Main Theorems -- V Unstable and Stable Manifolds for Endomorphisms -- V.1 Preliminary Facts -- V.2 Fundamental Lemmas -- V.3 Some Technical Facts About Contracting Maps -- V.4 Local Unstable Manifolds -- V.5 Global Unstable Sets -- V.6 Local and Global Stable Manifolds -- V.7 H246;lder Continuity of Sub-bundles -- V.8 Absolute Continuity of Families of Submanifolds -- V.9 Absolute Continuity of Conditional Measures -- VI Pesin8217;s Entropy Formula for Endomorphisms -- VI. 1 Main Results -- VI. 2 Preliminaries -- VI. 3 Proof of Theorem VI. 1.1 -- VII SRB Measures and Pesin8217;s Entropy Formula for Endomorphisms -- VII. 1 Formulation of the SRB Property and Main Results -- VII. 2 Technical Preparations for the Proof of the Main Result -- VII. 3 Proof of the Sufficiency for the Entropy Formula -- VII. 4 Lyapunov Charts -- VII. 5 Local Unstable Manifolds and Center Unstable Sets -- VII. 5.1 Local Unstable Manifolds and Center Unstable Sets -- VII. 5.2 Some Estimates -- VII. 5.3 Lipschitz Property of Unstable Subspaces within Center Unstable Sets -- VII. 6 Related Measurable Partitions -- VII. 6.1 Partitions Adapted to Lyapunov Charts -- VII. 6.2 More on Increasing Partitions -- VII. 6.3 Two Useful Partitions -- VII. 6.4 Quotient Structure -- VII. 6.5 Transverse Metrics -- VII. 7 Some Consequences of Besicovitch8217;s Covering Theorem -- VII. 8 The Main Proposition -- VII. 9 Proof of the Necessity for the Entropy Formula -- VII. 9.1 The Ergodic Case -- VII. 9.2 The General Case -- VIII Ergodic Property of Lyapunov Exponents -- VIII. 1 Introduction and Main Results -- VIII. 2 Lyapunov Exponents of Axiom A Attractors of Endomorphisms -- VIII. 3 Nonuniformly Completely Hyperbolic Attractors -- IX Generalized Entropy Formula -- IX. 1 Related Notions and Statements of the Main Results -- IX. 1.1 Pointwise Dimensions and Transverse Dimensions -- IX. 1.2 Statements of the Main Results -- IX. 2 Preliminaries -- IX. 2.1 Some Estimations on Unstable Manifolds -- IX. 2.2 Related Partitions -- IX. 2.3 Transverse Metrics on i(x)/- with 2iu -- IX. 2.4 Entropies of the Related Partitions -- IX. 3 Definitions of Local Entropies along Unstable Manifolds -- IX. 4 Estimates of Local Entropies along Unstable Manifolds -- IX. 4.1 Estimate of Local Entropy h -- IX. 4.2 Estimate of Local Entropy hi from Below with 2iu -- IX. 4.3 Estimate of Local Entropy hi from Above with 2iu -- IX. 5 The General Case: without Ergodic Assumption -- X Exact Dimensionality of Hyperbolic Measures -- X.1 Expanding Maps8217; Case8211;Proof of Theorem X.0.1 -- X.2 Diffeomorphisms8217; Case8211;Proof
- Control code
- SPR656399529
- Dimensions
- unknown
- Extent
- 1 online resource (xiii, 277 p.)
- Form of item
- online
- Isbn
- 9783642019548
- Other control number
- 9786612655807
- Other physical details
- ill.
- Specific material designation
- remote
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Smooth-ergodic-theory-for-endomorphisms-Min/THkrcxSim4g/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Smooth-ergodic-theory-for-endomorphisms-Min/THkrcxSim4g/">Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Smooth-ergodic-theory-for-endomorphisms-Min/THkrcxSim4g/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Smooth-ergodic-theory-for-endomorphisms-Min/THkrcxSim4g/">Smooth ergodic theory for endomorphisms, Min Qian, Jian-Sheng Xie, Shu Zhu, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>