Coverart for item
The Resource Soft condensed matter, R.A.L. Jones

Soft condensed matter, R.A.L. Jones

Label
Soft condensed matter
Title
Soft condensed matter
Statement of responsibility
R.A.L. Jones
Creator
Subject
Language
eng
Cataloging source
BDS
http://library.link/vocab/creatorDate
1961-
http://library.link/vocab/creatorName
Jones, Richard A. L.
Illustrations
illustrations
Index
index present
LC call number
QC173.458.S62
LC item number
J66 2002
Literary form
non fiction
Nature of contents
bibliography
Series statement
Oxford master series in condensed matter physics
Series volume
6
http://library.link/vocab/subjectName
Soft condensed matter
Label
Soft condensed matter, R.A.L. Jones
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.
  • Introduction and overview
  • 1.1.
  • What is soft condensed matter?
  • 1.2.
  • Soft matter--an overview
  • 2.
  • Forces, energies, and timescales in condensed matter
  • 2.1.
  • Introduction
  • 2.2.
  • Gases, liquids, and solids
  • 2.2.1.
  • Intermolecular forces
  • 2.2.2.
  • Condensation and freezing
  • 2.3.
  • Viscous, elastic, and viscoelastic behaviour
  • 2.3.1.
  • response of matter to a shear stress
  • 2.3.2.
  • Understanding the mechanical response of matter at a molecular level
  • 2.4.
  • Liquids and glasses
  • 2.4.1.
  • Practical glass-forming systems
  • 2.4.2.
  • Relaxation time and viscosity in glass-forming liquids
  • 2.4.3.
  • experimental glass transition
  • 2.4.4.
  • Understanding the glass transition
  • 3.
  • Phase transitions
  • 3.1.
  • Phase transitions in soft matter
  • 3.2.
  • Liquid-liquid unmixing--equilibrium phase diagrams
  • 3.2.1.
  • Interfaces between phases and interfacial tension
  • 3.3.
  • Liquid-liquid unmixing--kinetics of phase separation
  • 3.3.1.
  • Two mechanisms of phase separation
  • 3.3.2.
  • Spinodal decomposition
  • 3.3.3.
  • Nucleation
  • 3.3.4.
  • Growth in the late stages of phase separation
  • 3.4.
  • liquid-solid transition--freezing and melting
  • 3.4.1.
  • Kinetics of the liquid-solid transition--homogeneous nucleation
  • 3.4.2.
  • Kinetics of the liquid-solid transition--heterogeneous nucleation
  • 3.4.3.
  • Solidification--stability of a growing solidification front
  • 4.
  • Colloidal dispersions
  • 4.1.
  • Introduction
  • 4.2.
  • single colloidal particle in a liquid--Stokes' law and Brownian motion
  • 4.2.1.
  • Stokes' law
  • 4.2.2.
  • Brownian motion and the Einstein equation
  • 4.3.
  • Forces between colloidal particles
  • 4.3.1.
  • Interatomic forces and interparticle forces
  • 4.3.2.
  • Van der Waals forces
  • 4.3.3.
  • Electrostatic double-layer forces
  • 4.3.4.
  • Stabilising polymers with grafted polymer layers
  • 4.3.5.
  • Depletion interactions
  • 4.4.
  • Stability and phase behaviour of colloids
  • 4.4.1.
  • Crystallisation of hard-sphere colloids
  • 4.4.2.
  • Colloids with longer ranged repulsion
  • 4.4.3.
  • Colloids with weakly attractive interactions
  • 4.4.4.
  • Colloids with strongly attractive interactions
  • 4.5.
  • Flow in concentrated dispersions
  • 5.
  • Polymers
  • 5.1.
  • Introduction
  • 5.2.
  • variety of polymeric materials
  • 5.2.1.
  • Polymer chemistry
  • 5.2.2.
  • Stereochemistry
  • 5.2.3.
  • Architecture
  • 5.2.4.
  • Copolymers
  • 5.2.5.
  • Physical state
  • 5.3.
  • Random walks and the dimensions of polymer chains
  • 5.3.1.
  • freely jointed chain and its Gaussian limit
  • 5.3.2.
  • Real polymer chains--short-range correlations
  • 5.3.3.
  • Excluded volume, the theta temperature, and coil-globule transitions
  • 5.3.4.
  • Chain statistics in polymer melts--the Flory theorem
  • 5.3.5.
  • Measuring the size of polymer chains
  • 5.3.6.
  • Polymers at interfaces--adsorbed and grafted chains
  • 5.4.
  • Rubber elasticity
  • 5.5.
  • Viscoelasticity in polymers and the reptation model
  • 5.5.1.
  • Characterising the viscoelastic behaviour of polymers
  • 5.5.2.
  • Linear viscoelasticity and the Boltzmann superposition principle
  • 5.5.3.
  • temperature dependence of viscoelastic properties: time-temperature superposition
  • 5.5.4.
  • Viscoelasticity: experimental results for monodisperse linear polymer melts
  • 5.5.5.
  • Entanglements
  • 5.5.6.
  • tube model and the theory of reptation
  • 5.5.7.
  • Modifications to reptation theory
  • 6.
  • Gelation
  • 6.1.
  • Introduction
  • 6.2.
  • Classes of gel
  • 6.2.1.
  • Chemical gels
  • 6.2.2.
  • Physical gels
  • 6.3.
  • theory of gelation
  • 6.3.1.
  • percolation model
  • 6.3.2.
  • classical theory of gelation--the Flory-Stockmayer model
  • 6.3.3.
  • Non-classical exponents in the percolation model
  • 6.3.4.
  • elasticity of gels
  • 7.
  • Molecular order in soft condensed matter--liquid crystallinity
  • 7.1.
  • Introduction
  • 7.2.
  • Introduction to liquid crystal phases
  • 7.3.
  • nematic/isotropic transition
  • 7.4.
  • Distortions and topological defects in liquid crystals
  • 7.4.1.
  • Generalised rigidity and the elastic constants of a nematic liquid crystal
  • 7.4.2.
  • Boundary effects
  • 7.4.3.
  • Disclinations, dislocations, and other topological defects
  • 7.5.
  • electrical and magnetic properties of liquid crystals
  • 7.6.
  • Frederiks transition and liquid crystal displays
  • 7.7.
  • Polymer liquid crystals
  • 7.7.1.
  • Rigid polymers
  • 7.7.2.
  • Helix-coil transitions
  • 7.7.3.
  • isotropic/nematic transition for ideal hard rods
  • 7.7.4.
  • Transitions in real lyotropic systems
  • 7.7.5.
  • Thermotropic liquid crystal phases
  • 8.
  • Molecular order in soft condensed matter--crystallinity in polymers
  • 8.1.
  • Introduction
  • 8.2.
  • Hierarchies of structure
  • 8.3.
  • Chain-folded crystals
  • 9.
  • Supramolecular self-assembly in soft condensed matter
  • 9.1.
  • Introduction
  • 9.2.
  • Self-assembled phases in solutions of amphiphilic molecules
  • 9.2.1.
  • Why oil and water do not mix
  • 9.2.2.
  • Aggregation and phase separation
  • 9.2.3.
  • aggregation of amphiphilic molecules
  • 9.2.4.
  • Spherical micelles and the CMC
  • 9.2.5.
  • Cylindrical micelles
  • 9.2.6.
  • Bilayers and vesicles
  • 9.2.7.
  • elasticity and fluctuations of membranes
  • 9.2.8.
  • phase behaviour of concentrated amphiphile solutions
  • 9.2.9.
  • Complex phases in surfactant solutions and microemulsions
  • 9.3.
  • Self-assembly in polymers
  • 9.3.1.
  • Phase separation in polymer mixtures and the polymer/polymer interface
  • 9.3.2.
  • Microphase separation in copolymers
  • 9.3.3.
  • Block copolymer phase diagrams
  • 10.
  • Soft matter in nature
  • 10.1.
  • Introduction
  • 10.2.
  • components and structures of life
  • 10.3.
  • Nucleic acids
  • 10.4.
  • Proteins
  • 10.4.1.
  • Primary, secondary, and tertiary structure of proteins
  • 10.4.2.
  • Protein folding
  • 10.4.3.
  • Interactions between proteins: misfolding, aggregation, and crystallisation
  • 10.4.4.
  • Protein misfolding, gelation, and amyloidogenesis
  • 10.5.
  • Polysaccharides
  • 10.6.
  • Membranes
  • A.
  • Some results from statistical mechanics
  • A.1.
  • Entropy and the second law of thermodynamics
  • A.2.
  • Energy, entropy, and temperature
  • A.3.
  • Free energy and the Gibbs function
  • A.4.
  • chemical potential
  • B.
  • distribution function of an ideal random walk
  • B.1.
  • Direct enumeration of the statistical weight
  • B.2.
  • Random walks and the diffusion equation
  • C.
  • Answers to selected problems
  • C.1.
  • Chapter 2
  • C.2.
  • Chapter 3
  • C.3.
  • Chapter 4
  • C.4.
  • Chapter 5
  • C.5.
  • Chapter 6
  • C.6.
  • Chapter 7
  • C.7.
  • Chapter 8
  • C.8.
  • Chapter 9
  • C.9.
  • Chapter 10
  • .
  • Bibliography
  • .
  • Index
Control code
070015357928
Dimensions
26 cm.
Extent
x, 195 p.
Isbn
9780198505891
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
ill.
Label
Soft condensed matter, R.A.L. Jones
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
volume
Carrier category code
  • nc
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • 1.
  • Introduction and overview
  • 1.1.
  • What is soft condensed matter?
  • 1.2.
  • Soft matter--an overview
  • 2.
  • Forces, energies, and timescales in condensed matter
  • 2.1.
  • Introduction
  • 2.2.
  • Gases, liquids, and solids
  • 2.2.1.
  • Intermolecular forces
  • 2.2.2.
  • Condensation and freezing
  • 2.3.
  • Viscous, elastic, and viscoelastic behaviour
  • 2.3.1.
  • response of matter to a shear stress
  • 2.3.2.
  • Understanding the mechanical response of matter at a molecular level
  • 2.4.
  • Liquids and glasses
  • 2.4.1.
  • Practical glass-forming systems
  • 2.4.2.
  • Relaxation time and viscosity in glass-forming liquids
  • 2.4.3.
  • experimental glass transition
  • 2.4.4.
  • Understanding the glass transition
  • 3.
  • Phase transitions
  • 3.1.
  • Phase transitions in soft matter
  • 3.2.
  • Liquid-liquid unmixing--equilibrium phase diagrams
  • 3.2.1.
  • Interfaces between phases and interfacial tension
  • 3.3.
  • Liquid-liquid unmixing--kinetics of phase separation
  • 3.3.1.
  • Two mechanisms of phase separation
  • 3.3.2.
  • Spinodal decomposition
  • 3.3.3.
  • Nucleation
  • 3.3.4.
  • Growth in the late stages of phase separation
  • 3.4.
  • liquid-solid transition--freezing and melting
  • 3.4.1.
  • Kinetics of the liquid-solid transition--homogeneous nucleation
  • 3.4.2.
  • Kinetics of the liquid-solid transition--heterogeneous nucleation
  • 3.4.3.
  • Solidification--stability of a growing solidification front
  • 4.
  • Colloidal dispersions
  • 4.1.
  • Introduction
  • 4.2.
  • single colloidal particle in a liquid--Stokes' law and Brownian motion
  • 4.2.1.
  • Stokes' law
  • 4.2.2.
  • Brownian motion and the Einstein equation
  • 4.3.
  • Forces between colloidal particles
  • 4.3.1.
  • Interatomic forces and interparticle forces
  • 4.3.2.
  • Van der Waals forces
  • 4.3.3.
  • Electrostatic double-layer forces
  • 4.3.4.
  • Stabilising polymers with grafted polymer layers
  • 4.3.5.
  • Depletion interactions
  • 4.4.
  • Stability and phase behaviour of colloids
  • 4.4.1.
  • Crystallisation of hard-sphere colloids
  • 4.4.2.
  • Colloids with longer ranged repulsion
  • 4.4.3.
  • Colloids with weakly attractive interactions
  • 4.4.4.
  • Colloids with strongly attractive interactions
  • 4.5.
  • Flow in concentrated dispersions
  • 5.
  • Polymers
  • 5.1.
  • Introduction
  • 5.2.
  • variety of polymeric materials
  • 5.2.1.
  • Polymer chemistry
  • 5.2.2.
  • Stereochemistry
  • 5.2.3.
  • Architecture
  • 5.2.4.
  • Copolymers
  • 5.2.5.
  • Physical state
  • 5.3.
  • Random walks and the dimensions of polymer chains
  • 5.3.1.
  • freely jointed chain and its Gaussian limit
  • 5.3.2.
  • Real polymer chains--short-range correlations
  • 5.3.3.
  • Excluded volume, the theta temperature, and coil-globule transitions
  • 5.3.4.
  • Chain statistics in polymer melts--the Flory theorem
  • 5.3.5.
  • Measuring the size of polymer chains
  • 5.3.6.
  • Polymers at interfaces--adsorbed and grafted chains
  • 5.4.
  • Rubber elasticity
  • 5.5.
  • Viscoelasticity in polymers and the reptation model
  • 5.5.1.
  • Characterising the viscoelastic behaviour of polymers
  • 5.5.2.
  • Linear viscoelasticity and the Boltzmann superposition principle
  • 5.5.3.
  • temperature dependence of viscoelastic properties: time-temperature superposition
  • 5.5.4.
  • Viscoelasticity: experimental results for monodisperse linear polymer melts
  • 5.5.5.
  • Entanglements
  • 5.5.6.
  • tube model and the theory of reptation
  • 5.5.7.
  • Modifications to reptation theory
  • 6.
  • Gelation
  • 6.1.
  • Introduction
  • 6.2.
  • Classes of gel
  • 6.2.1.
  • Chemical gels
  • 6.2.2.
  • Physical gels
  • 6.3.
  • theory of gelation
  • 6.3.1.
  • percolation model
  • 6.3.2.
  • classical theory of gelation--the Flory-Stockmayer model
  • 6.3.3.
  • Non-classical exponents in the percolation model
  • 6.3.4.
  • elasticity of gels
  • 7.
  • Molecular order in soft condensed matter--liquid crystallinity
  • 7.1.
  • Introduction
  • 7.2.
  • Introduction to liquid crystal phases
  • 7.3.
  • nematic/isotropic transition
  • 7.4.
  • Distortions and topological defects in liquid crystals
  • 7.4.1.
  • Generalised rigidity and the elastic constants of a nematic liquid crystal
  • 7.4.2.
  • Boundary effects
  • 7.4.3.
  • Disclinations, dislocations, and other topological defects
  • 7.5.
  • electrical and magnetic properties of liquid crystals
  • 7.6.
  • Frederiks transition and liquid crystal displays
  • 7.7.
  • Polymer liquid crystals
  • 7.7.1.
  • Rigid polymers
  • 7.7.2.
  • Helix-coil transitions
  • 7.7.3.
  • isotropic/nematic transition for ideal hard rods
  • 7.7.4.
  • Transitions in real lyotropic systems
  • 7.7.5.
  • Thermotropic liquid crystal phases
  • 8.
  • Molecular order in soft condensed matter--crystallinity in polymers
  • 8.1.
  • Introduction
  • 8.2.
  • Hierarchies of structure
  • 8.3.
  • Chain-folded crystals
  • 9.
  • Supramolecular self-assembly in soft condensed matter
  • 9.1.
  • Introduction
  • 9.2.
  • Self-assembled phases in solutions of amphiphilic molecules
  • 9.2.1.
  • Why oil and water do not mix
  • 9.2.2.
  • Aggregation and phase separation
  • 9.2.3.
  • aggregation of amphiphilic molecules
  • 9.2.4.
  • Spherical micelles and the CMC
  • 9.2.5.
  • Cylindrical micelles
  • 9.2.6.
  • Bilayers and vesicles
  • 9.2.7.
  • elasticity and fluctuations of membranes
  • 9.2.8.
  • phase behaviour of concentrated amphiphile solutions
  • 9.2.9.
  • Complex phases in surfactant solutions and microemulsions
  • 9.3.
  • Self-assembly in polymers
  • 9.3.1.
  • Phase separation in polymer mixtures and the polymer/polymer interface
  • 9.3.2.
  • Microphase separation in copolymers
  • 9.3.3.
  • Block copolymer phase diagrams
  • 10.
  • Soft matter in nature
  • 10.1.
  • Introduction
  • 10.2.
  • components and structures of life
  • 10.3.
  • Nucleic acids
  • 10.4.
  • Proteins
  • 10.4.1.
  • Primary, secondary, and tertiary structure of proteins
  • 10.4.2.
  • Protein folding
  • 10.4.3.
  • Interactions between proteins: misfolding, aggregation, and crystallisation
  • 10.4.4.
  • Protein misfolding, gelation, and amyloidogenesis
  • 10.5.
  • Polysaccharides
  • 10.6.
  • Membranes
  • A.
  • Some results from statistical mechanics
  • A.1.
  • Entropy and the second law of thermodynamics
  • A.2.
  • Energy, entropy, and temperature
  • A.3.
  • Free energy and the Gibbs function
  • A.4.
  • chemical potential
  • B.
  • distribution function of an ideal random walk
  • B.1.
  • Direct enumeration of the statistical weight
  • B.2.
  • Random walks and the diffusion equation
  • C.
  • Answers to selected problems
  • C.1.
  • Chapter 2
  • C.2.
  • Chapter 3
  • C.3.
  • Chapter 4
  • C.4.
  • Chapter 5
  • C.5.
  • Chapter 6
  • C.6.
  • Chapter 7
  • C.7.
  • Chapter 8
  • C.8.
  • Chapter 9
  • C.9.
  • Chapter 10
  • .
  • Bibliography
  • .
  • Index
Control code
070015357928
Dimensions
26 cm.
Extent
x, 195 p.
Isbn
9780198505891
Media category
unmediated
Media MARC source
rdamedia
Media type code
  • n
Other physical details
ill.

Library Locations

    • Harold Cohen LibraryBorrow it
      Ashton Street, Liverpool, L69 3DA, GB
      53.418074 -2.967913
Processing Feedback ...