The Resource Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)
Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)
Resource Information
The item Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.This item is available to borrow from 1 library branch.
Resource Information
The item Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book) represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
This item is available to borrow from 1 library branch.
- Summary
- This book provides a detailed examination of the concentration, form and cycling of trace metals and metalloids through the aquatic biosphere, and has sections dealing with the atmosphere, the ocean, lakes and rivers. It discusses exchanges at the water interface (air/water and sediment/water) and the major drivers of the cycling, concentration and form of trace metals in aquatic systems. The initial chapters focus on the fundamental principles and modelling approaches needed to understand metal concentration, speciation and fate in the aquatic environment, while the later chapters focus on
- Language
- eng
- Extent
- 1 online resource (443 p.)
- Note
- 4.2 The underlying basis and application of chemical equilibrium models
- Contents
-
- Cover; Title page; Copyright page; Contents; Preface; About the companion website; CHAPTER 1: Introduction; 1.1 A historical background to metal aquatic chemistry; 1.2 Historical problems with metal measurements in environmental media; 1.3 Recent advances in aquatic metal analysis; References; Problems; CHAPTER 2: An introduction to the cycling of metals in the biosphere; 2.1 The hydrologic cycle; 2.2 An introduction to the global cycling of trace metal(loid)s; 2.2.1 The sources and cycling of metal(loid)s in the biosphere; 2.2.2 Metal(loid) partitioning and solubility in natural waters
- 2.2.3 Human influence over metal(loid) fate and transport2.2.4 Trace metal(loid) inputs to the atmosphere; 2.2.5 Metal(loid)s in the terrestrial environment and freshwater ecosystems; 2.2.6 The transport of metal(loid)s to the ocean; 2.2.7 Trace metal(loid)s in ocean waters; 2.2.8 Trace metal(loid) inputs from hydrothermal vents; 2.3 Global cycles of some important trace metals; 2.3.1 The global cycles of cadmium, copper, and zinc; 2.3.2 The global cycle of mercury and lead; 2.4 Chapter summary; References; Problems
- CHAPTER 3: Chemical thermodynamics and metal(loid) complexation in natural waters3.1 Thermodynamic background for understanding trace metal(loid) complexation; 3.1.1 The relationship between free energy and the equilibrium constant; 3.1.2 Ionic strength effects; 3.1.3 Thermodynamic equilibrium, kinetics and steady state; 3.2 Bonding, electronic configuration, and complex formation; 3.2.1 Ligand Field Theory; 3.2.2 Thermodynamic effects of orbital splitting; 3.2.3 Inorganic chemistry and complexation of transition metals
- 3.2.4 Inorganic chemistry and complexation of non-transition metals and metalloids3.3 Complexation of metals in solution; 3.3.1 Inorganic complexation; 3.3.2 An approach to determining metal(loid) speciation in solution; 3.3.3 The chemistry and speciation of metal-binding ligands; 3.3.4 The complexation of the major ions in solution; 3.3.5 Metal complexation with low molecular weight organic ligands; 3.3.6 Complexation to large molecular weight organic matter; 3.4 Trace metal interactions with the solid phase; 3.4.1 Precipitation and dissolution; 3.4.2 Adsorption of metals to aqueous solids
- 3.4.3 Dissolved-particulate partition coefficients3.4.4 Adsorption isotherms; 3.4.5 A complexation-based model for adsorption; 3.5 Redox transformations and thermodynamic calculations; 3.5.1 Electrochemistry and the equilibrium constant; 3.5.2 The range in electrode potential and the stability of water; 3.5.3 Equilibrium calculations involving redox reactions; 3.5.4 Environmental considerations and controlling reactions; 3.6 Chapter summary; References; Problems; CHAPTER 4: Modeling approaches to estimating speciation and interactions in aqueous systems; 4.1 Introduction
- Isbn
- 9781118274576
- Label
- Trace Metals in Aquatic Systems
- Title
- Trace Metals in Aquatic Systems
- Statement of responsibility
- Robert P. Mason
- Language
- eng
- Summary
- This book provides a detailed examination of the concentration, form and cycling of trace metals and metalloids through the aquatic biosphere, and has sections dealing with the atmosphere, the ocean, lakes and rivers. It discusses exchanges at the water interface (air/water and sediment/water) and the major drivers of the cycling, concentration and form of trace metals in aquatic systems. The initial chapters focus on the fundamental principles and modelling approaches needed to understand metal concentration, speciation and fate in the aquatic environment, while the later chapters focus on
- Cataloging source
- EBLCP
- http://library.link/vocab/creatorDate
- 1956-
- http://library.link/vocab/creatorName
- Mason, Robert Peter
- Index
- no index present
- Literary form
- non fiction
- Nature of contents
- dictionaries
- http://library.link/vocab/subjectName
-
- Trace elements
- Water
- Water chemistry
- Label
- Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)
- Note
- 4.2 The underlying basis and application of chemical equilibrium models
- Contents
-
- Cover; Title page; Copyright page; Contents; Preface; About the companion website; CHAPTER 1: Introduction; 1.1 A historical background to metal aquatic chemistry; 1.2 Historical problems with metal measurements in environmental media; 1.3 Recent advances in aquatic metal analysis; References; Problems; CHAPTER 2: An introduction to the cycling of metals in the biosphere; 2.1 The hydrologic cycle; 2.2 An introduction to the global cycling of trace metal(loid)s; 2.2.1 The sources and cycling of metal(loid)s in the biosphere; 2.2.2 Metal(loid) partitioning and solubility in natural waters
- 2.2.3 Human influence over metal(loid) fate and transport2.2.4 Trace metal(loid) inputs to the atmosphere; 2.2.5 Metal(loid)s in the terrestrial environment and freshwater ecosystems; 2.2.6 The transport of metal(loid)s to the ocean; 2.2.7 Trace metal(loid)s in ocean waters; 2.2.8 Trace metal(loid) inputs from hydrothermal vents; 2.3 Global cycles of some important trace metals; 2.3.1 The global cycles of cadmium, copper, and zinc; 2.3.2 The global cycle of mercury and lead; 2.4 Chapter summary; References; Problems
- CHAPTER 3: Chemical thermodynamics and metal(loid) complexation in natural waters3.1 Thermodynamic background for understanding trace metal(loid) complexation; 3.1.1 The relationship between free energy and the equilibrium constant; 3.1.2 Ionic strength effects; 3.1.3 Thermodynamic equilibrium, kinetics and steady state; 3.2 Bonding, electronic configuration, and complex formation; 3.2.1 Ligand Field Theory; 3.2.2 Thermodynamic effects of orbital splitting; 3.2.3 Inorganic chemistry and complexation of transition metals
- 3.2.4 Inorganic chemistry and complexation of non-transition metals and metalloids3.3 Complexation of metals in solution; 3.3.1 Inorganic complexation; 3.3.2 An approach to determining metal(loid) speciation in solution; 3.3.3 The chemistry and speciation of metal-binding ligands; 3.3.4 The complexation of the major ions in solution; 3.3.5 Metal complexation with low molecular weight organic ligands; 3.3.6 Complexation to large molecular weight organic matter; 3.4 Trace metal interactions with the solid phase; 3.4.1 Precipitation and dissolution; 3.4.2 Adsorption of metals to aqueous solids
- 3.4.3 Dissolved-particulate partition coefficients3.4.4 Adsorption isotherms; 3.4.5 A complexation-based model for adsorption; 3.5 Redox transformations and thermodynamic calculations; 3.5.1 Electrochemistry and the equilibrium constant; 3.5.2 The range in electrode potential and the stability of water; 3.5.3 Equilibrium calculations involving redox reactions; 3.5.4 Environmental considerations and controlling reactions; 3.6 Chapter summary; References; Problems; CHAPTER 4: Modeling approaches to estimating speciation and interactions in aqueous systems; 4.1 Introduction
- Control code
- ocn829459896
- Dimensions
- unknown
- Extent
- 1 online resource (443 p.)
- Form of item
-
- online
- electronic
- Isbn
- 9781118274576
- Specific material designation
- remote
- Label
- Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)
- Note
- 4.2 The underlying basis and application of chemical equilibrium models
- Contents
-
- Cover; Title page; Copyright page; Contents; Preface; About the companion website; CHAPTER 1: Introduction; 1.1 A historical background to metal aquatic chemistry; 1.2 Historical problems with metal measurements in environmental media; 1.3 Recent advances in aquatic metal analysis; References; Problems; CHAPTER 2: An introduction to the cycling of metals in the biosphere; 2.1 The hydrologic cycle; 2.2 An introduction to the global cycling of trace metal(loid)s; 2.2.1 The sources and cycling of metal(loid)s in the biosphere; 2.2.2 Metal(loid) partitioning and solubility in natural waters
- 2.2.3 Human influence over metal(loid) fate and transport2.2.4 Trace metal(loid) inputs to the atmosphere; 2.2.5 Metal(loid)s in the terrestrial environment and freshwater ecosystems; 2.2.6 The transport of metal(loid)s to the ocean; 2.2.7 Trace metal(loid)s in ocean waters; 2.2.8 Trace metal(loid) inputs from hydrothermal vents; 2.3 Global cycles of some important trace metals; 2.3.1 The global cycles of cadmium, copper, and zinc; 2.3.2 The global cycle of mercury and lead; 2.4 Chapter summary; References; Problems
- CHAPTER 3: Chemical thermodynamics and metal(loid) complexation in natural waters3.1 Thermodynamic background for understanding trace metal(loid) complexation; 3.1.1 The relationship between free energy and the equilibrium constant; 3.1.2 Ionic strength effects; 3.1.3 Thermodynamic equilibrium, kinetics and steady state; 3.2 Bonding, electronic configuration, and complex formation; 3.2.1 Ligand Field Theory; 3.2.2 Thermodynamic effects of orbital splitting; 3.2.3 Inorganic chemistry and complexation of transition metals
- 3.2.4 Inorganic chemistry and complexation of non-transition metals and metalloids3.3 Complexation of metals in solution; 3.3.1 Inorganic complexation; 3.3.2 An approach to determining metal(loid) speciation in solution; 3.3.3 The chemistry and speciation of metal-binding ligands; 3.3.4 The complexation of the major ions in solution; 3.3.5 Metal complexation with low molecular weight organic ligands; 3.3.6 Complexation to large molecular weight organic matter; 3.4 Trace metal interactions with the solid phase; 3.4.1 Precipitation and dissolution; 3.4.2 Adsorption of metals to aqueous solids
- 3.4.3 Dissolved-particulate partition coefficients3.4.4 Adsorption isotherms; 3.4.5 A complexation-based model for adsorption; 3.5 Redox transformations and thermodynamic calculations; 3.5.1 Electrochemistry and the equilibrium constant; 3.5.2 The range in electrode potential and the stability of water; 3.5.3 Equilibrium calculations involving redox reactions; 3.5.4 Environmental considerations and controlling reactions; 3.6 Chapter summary; References; Problems; CHAPTER 4: Modeling approaches to estimating speciation and interactions in aqueous systems; 4.1 Introduction
- Control code
- ocn829459896
- Dimensions
- unknown
- Extent
- 1 online resource (443 p.)
- Form of item
-
- online
- electronic
- Isbn
- 9781118274576
- Specific material designation
- remote
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Trace-Metals-in-Aquatic-Systems-Robert-P.-Mason/Kjc9WXOpDJE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Trace-Metals-in-Aquatic-Systems-Robert-P.-Mason/Kjc9WXOpDJE/">Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/portal/Trace-Metals-in-Aquatic-Systems-Robert-P.-Mason/Kjc9WXOpDJE/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/portal/Trace-Metals-in-Aquatic-Systems-Robert-P.-Mason/Kjc9WXOpDJE/">Trace Metals in Aquatic Systems, Robert P. Mason, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>