Coverart for item
The Resource Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, edited by Majeti Narasimha Vara Prasad

Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, edited by Majeti Narasimha Vara Prasad

Label
Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids
Title
Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids
Statement of responsibility
edited by Majeti Narasimha Vara Prasad
Contributor
Editor
Subject
Language
eng
Summary
Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids covers all the technical aspects of gene transfer, from molecular methods, to field performance using a wide range of plants and diverse abiotic stress factors. It describes methodologies that are well established as a key resource for researchers, as well as a tool for training technicians and students. This book is an essential reference for those in the plant sciences, forestry, agriculture, microbiology, environmental biology and plant biotechnology, and those using transgenic plant models in such areas as molecular and cell biology, developmental biology, stress physiology and phytoremediation
Cataloging source
N$T
Dewey number
631.5233
Index
no index present
LC call number
SB123.57
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorDate
1953-
http://library.link/vocab/relatedWorkOrContributorName
Prasad, M. N. V.
http://library.link/vocab/subjectName
  • Transgenic plants.
  • Genetic engineering.
  • Heavy metals.
  • Semimetals.
Label
Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, edited by Majeti Narasimha Vara Prasad
Instantiates
Publication
Antecedent source
unknown
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover; Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Copyright Page; Contents; List of Contributors; Preface; Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Acknowledgments; I. Emerging Issues; 1 Transgenics in Phytoremediation of Metals and Metalloids: From Laboratory to Field; 1.1 Introduction; 1.2 Localizing Genetic Loci of Metal Accumulation; 1.3 Enhanced Metal Speciation With Transgenics; 1.4 Transgenics for Ecophysiological Adaptations of Metal Accumulation; 1.5 Transgenic Crops in Phytoremediation; 1.5.1 Outlook
  • AcknowledgmentReferences; 2 Genetic Engineering for Metal and Metalloid Detoxification; 2.1 Introduction; 2.2 Genetic Engineering and Modification of Plants to Enhance Phytoremediation; 2.2.1 Manipulating Metal/Metalloid Transporter Genes and Uptake System; 2.2.2 Enhancing Metals and Metalloids Ligand Production; 2.2.3 Conversion of Metals and Metalloids to Less Toxic and Volatile Forms; 2.3 Metal and Metalloid Hyperaccumulating Plants; 2.4 Cellular Mechanisms in Plants for Heavy-Metal Detoxification and Tolerance; 2.4.1 Phytochelatins for Metal Sequestering; 2.4.2 Metallothioneins
  • 2.4.3 Plant Metal Transporters2.5 Transgenes Promoting Efficient Phytoremediation in Transgenic Plants; 2.5.1 Genes Encoding Metal-Binding Proteins and Enzymes for Biosynthesis of Metal Ligands; 2.5.2 Genes Encoding Metal Transporters; 2.5.3 Genes Encoding Enzymes That Detoxify Metals and Metalloids by Chemical Modification; 2.5.4 Genes Involved in Primary Metabolism; 2.5.5 Genes Involved in Signaling and Gene Regulation; 2.6 Conclusions; Acknowledgments; References; 3 Emerging Trends in Transgenic Technology for Phytoremediation of Toxic Metals and Metalloids; 3.1 Introduction
  • 3.2 Characteristic Features of Plants for Phytoremediation3.3 Strategies for Genetic Manipulation to Engineer Phytoremediation Capacity in Plants; 3.3.1 Constitutive Overexpression of Single or Multiple Target Genes; 3.3.2 Tissue Specific Expression of Genes; 3.3.3 Organelle Specific Expression; 3.4 Advantages of Woody Transgenic Plants Over Herbaceous Transgenic Plants; 3.5 General Mechanism of Toxic Metal Uptake and Accumulation in Plants; 3.6 Genetic Engineering of Plants for Enhanced Metal Uptake; 3.6.1 Genes Encoding Metallothioneins, Phytochelatins, and Other Metal Chelators
  • 3.6.2 Metal Transporters3.6.3 Antioxidants; 3.6.4 Chemical Transformation of Metals With Transgenic Plants; 3.7 Potential Risks Associated With the Use of Transgenic Plants and Their Mitigation Strategies; 3.8 Conclusion and Future Perspectives; References; 4 Emerging Trends and Tools in Transgenic Plant Technology for Phytoremediation of Toxic Metals and Metalloids; 4.1 Introduction; 4.2 Potential Target Genes Likely to Contribute to Metal(loid) Accumulation and Tolerance in Plants; 4.2.1 Metal Transporters Genes Involved in Uptake, Translocation and Sequestration of Metals
Dimensions
unknown
Extent
1 online resource.
File format
unknown
Form of item
online
Isbn
9780128143896
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
Label
Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids, edited by Majeti Narasimha Vara Prasad
Publication
Antecedent source
unknown
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Front Cover; Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Copyright Page; Contents; List of Contributors; Preface; Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Acknowledgments; I. Emerging Issues; 1 Transgenics in Phytoremediation of Metals and Metalloids: From Laboratory to Field; 1.1 Introduction; 1.2 Localizing Genetic Loci of Metal Accumulation; 1.3 Enhanced Metal Speciation With Transgenics; 1.4 Transgenics for Ecophysiological Adaptations of Metal Accumulation; 1.5 Transgenic Crops in Phytoremediation; 1.5.1 Outlook
  • AcknowledgmentReferences; 2 Genetic Engineering for Metal and Metalloid Detoxification; 2.1 Introduction; 2.2 Genetic Engineering and Modification of Plants to Enhance Phytoremediation; 2.2.1 Manipulating Metal/Metalloid Transporter Genes and Uptake System; 2.2.2 Enhancing Metals and Metalloids Ligand Production; 2.2.3 Conversion of Metals and Metalloids to Less Toxic and Volatile Forms; 2.3 Metal and Metalloid Hyperaccumulating Plants; 2.4 Cellular Mechanisms in Plants for Heavy-Metal Detoxification and Tolerance; 2.4.1 Phytochelatins for Metal Sequestering; 2.4.2 Metallothioneins
  • 2.4.3 Plant Metal Transporters2.5 Transgenes Promoting Efficient Phytoremediation in Transgenic Plants; 2.5.1 Genes Encoding Metal-Binding Proteins and Enzymes for Biosynthesis of Metal Ligands; 2.5.2 Genes Encoding Metal Transporters; 2.5.3 Genes Encoding Enzymes That Detoxify Metals and Metalloids by Chemical Modification; 2.5.4 Genes Involved in Primary Metabolism; 2.5.5 Genes Involved in Signaling and Gene Regulation; 2.6 Conclusions; Acknowledgments; References; 3 Emerging Trends in Transgenic Technology for Phytoremediation of Toxic Metals and Metalloids; 3.1 Introduction
  • 3.2 Characteristic Features of Plants for Phytoremediation3.3 Strategies for Genetic Manipulation to Engineer Phytoremediation Capacity in Plants; 3.3.1 Constitutive Overexpression of Single or Multiple Target Genes; 3.3.2 Tissue Specific Expression of Genes; 3.3.3 Organelle Specific Expression; 3.4 Advantages of Woody Transgenic Plants Over Herbaceous Transgenic Plants; 3.5 General Mechanism of Toxic Metal Uptake and Accumulation in Plants; 3.6 Genetic Engineering of Plants for Enhanced Metal Uptake; 3.6.1 Genes Encoding Metallothioneins, Phytochelatins, and Other Metal Chelators
  • 3.6.2 Metal Transporters3.6.3 Antioxidants; 3.6.4 Chemical Transformation of Metals With Transgenic Plants; 3.7 Potential Risks Associated With the Use of Transgenic Plants and Their Mitigation Strategies; 3.8 Conclusion and Future Perspectives; References; 4 Emerging Trends and Tools in Transgenic Plant Technology for Phytoremediation of Toxic Metals and Metalloids; 4.1 Introduction; 4.2 Potential Target Genes Likely to Contribute to Metal(loid) Accumulation and Tolerance in Plants; 4.2.1 Metal Transporters Genes Involved in Uptake, Translocation and Sequestration of Metals
Dimensions
unknown
Extent
1 online resource.
File format
unknown
Form of item
online
Isbn
9780128143896
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote

Library Locations

Processing Feedback ...