Coverart for item
The Resource Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era, Hâector J. de los Santos

Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era, Hâector J. de los Santos

Label
Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era
Title
Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era
Statement of responsibility
Hâector J. de los Santos
Creator
Contributor
Author
Distributor
Publisher
Subject
Genre
Language
eng
Summary
The operational theme permeating most definitions of the IoT concept, is the wireless communication of networked objects, in particular, smart sensing devices and machines, exchanging data a la Internet. In this book, a detailed look is taken at the fundamental principles of devices and techniques whose exploitation will facilitate the development of compact, power-efficient, autonomous, smart, networked sensing nodes underlying and encompassing the emerging IoT era. The book provides an understanding of nanoelectromechanical quantum circuits and systems (NEMX), as exemplified by firstly the uncovering of their origins, impetus and motivation, and secondly by developing an understanding of their device physics, including, the topics of actuation, mechanical vibration and sensing. Next the fundamentals of key devices, namely, MEMS/NEMS switches, varactors and resonators are covered, including a wide range of implementations. The book then looks at their energy supply via energy harvesting, as derived from wireless energy and mechanical vibrations. Finally, after an introduction to the fundamentals of IoT networks and nodes, the book concludes with an exploration of how the NEMX components are encroaching in a variety of emerging IoT applications
Member of
Cataloging source
CaBNVSL
http://library.link/vocab/creatorName
Santos, Hâector J. de los
Dewey number
621.395
Illustrations
illustrations
Index
index present
LC call number
QC176.8.N35
LC item number
H43 2019eb
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • IEEE Xplore (Online Service)
  • River Publishers
Series statement
River Publishers series in electronic materials and devices
http://library.link/vocab/subjectName
  • Nanoelectromechanical systems
  • Internet of things
Label
Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era, Hâector J. de los Santos
Instantiates
Publication
Distribution
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76
  • 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160
  • 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199
Control code
9218810
Dimensions
unknown
Extent
1 PDF (xxxi, 199 pages).
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9788770221276
Media category
electronic
Media MARC source
isbdmedia
Specific material designation
remote
System control number
  • (CaBNVSL)mat09218810
  • (IDAMS)0b0000648d199f3f
System details
Mode of access: World Wide Web
Label
Understanding nanoelectromechanical quantum circuits and systems (NEMX) for the Internet of Things (IOT) era, Hâector J. de los Santos
Publication
Distribution
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • Preface xiii Acknowledgments xvii -- List of Figures xix -- List of Tables xxvii -- List of Abbreviations xxix -- 1 The Internet of Things 1 -- 1.1 Origins 1 -- 1.2 IoT Motivation/Impact 3 -- 1.3 Summary 6 -- 2 Microelectromechanical and Nanoelectromechanical Systems 7 -- 2.1 MEMS/NEMS Origins 7 -- 2.2 MEMS/NEMS Impetus/Motivation 8 -- 2.3 Summary 10 -- 3 Understanding MEMS/NEMS Device Physics 11 -- 3.1 Actuation 11 -- 3.1.1 Electrostatic Actuation 11 -- 3.1.1.1 Parallel-plate capacitor 11 -- 3.1.1.2 Electrostatically actuated cantilever beam 14 -- 3.1.1.3 Interdigitated (comb-drive) capacitor 17 -- 3.1.2 Piezoelectric Actuation 18 -- 3.1.2.1 Piezoelectric cantilever probe 19 -- 3.1.3 Casimir Actuation 21 -- 3.1.3.1 Casimir's own force calculation 22 -- 3.1.3.2 Lifshitz' calculation of the casimir force 24 -- 3.1.3.3 Casimir force calculation of brown and maclay 29 -- 3.1.3.4 Casimir force calculations for arbitrary geometries 31 -- 3.1.3.4.1 Computing the casimir energy based on multipole interactions 31 -- 3.1.3.4.2 Computing the casimir force using finite-difference time-domain techniques 33 -- 3.1.3.4.3 Computing the casimir force using the framework of macroscopic quantum electrodynamics 34 -- 3.1.3.5 Corrections to ideal casimir force derivation 37 -- 3.1.4 Radiation Pressure Actuation 38 -- 3.1.4.1 Radiation pressure manipulation of particles 40 -- 3.1.4.2 Radiation pressure trapping of particles 41 -- 3.1.4.3 Radiation pressure effect on cantilever beams 42 -- 3.2 Mechanical Vibration 45 -- 3.2.1 The Single-Degree-of-Freedom System 46 -- 3.2.2 The Many-Degree-of-Freedom System 48 -- 3.2.3 Rayleigh's Method 49 -- 3.3 Thermal Noise in MEMS/NEMS 51 -- 3.3.1 Fundamental Origin of Intrinsic Noise 51 -- 3.3.1.1 Amplitude of brownian (random) displacement of cantilever beam 64 -- 3.4 Sensing 70 -- 3.4.1 The Accelerometer 70 -- 3.4.1.1 Capacitive accelerometer implementation 72 -- 3.4.1.2 Quantum mechanical tunneling accelerometer 73 -- 3.4.2 Vibration Sensors 76
  • 3.5 Summary 79 -- 4 Understanding MEMS/NEMS Devices 81 -- 4.1 Introduction 81 -- 4.2 MEMS/NEMS Switches 81 -- 4.2.1 Nanoelectromechanical Switches 84 -- 4.2.1.1 Downscaled MEMS/NEMS switches 86 -- 4.2.1.2 MEMS/NEMS switches via new materials 92 -- 4.3 MEMS/NEMS Varactors 95 -- 4.3.1 Nanoelectromechanical Varactors 95 -- 4.3.1.1 Dual-gap MEMS/NEMS varactors 95 -- 4.3.1.2 MEMS/NEMS varactors via new materials 97 -- 4.4 MEMS/NEMS Resonators 99 -- 4.4.1 Nanoelectromechanical Resonators 99 -- 4.4.1.1 Clamp-clamp RF MEMS resonators 99 -- 4.4.1.2 MEMS/NEMS resonators via new materials 101 -- 4.5 Summary 111 -- 5 Understanding MEMS/NEMS for Energy Harvesting 113 -- 5.1 Introduction 113 -- 5.2 Wireless Energy Harvesting 113 -- 5.2.1 RF-DC Conversion Circuit 116 -- 5.2.2 Resonant Amplification of Extremely Small Signals 118 -- 5.3 Mechanical Energy Harvesting 123 -- 5.3.1 Theory of Energy Harvesting from Vibrations 125 -- 5.3.1.1 Piezoelectric conversion 127 -- 5.3.1.2 Electrostatic conversion 132 -- 5.4 Summary 136 -- 6 NEMX Applications in the IoT Era 137 -- 6.1 Introduction 137 -- 6.1.1 Wireless Connectivity 137 -- 6.1.1.1 Communication protocols 141 -- 6.1.1.2 Network range 142 -- 6.2 Roots of the Internet of Things 142 -- 6.3 Applications of the Internet of Things 144 -- 6.3.1 NEMX in Smart Home IoT Applications 144 -- 6.3.2 NEMX in Wearable IoT Applications 146 -- 6.3.3 NEMX in Smart Cities IoT Applications 146 -- 6.3.4 NEMX in Smart Grid IoT Applications 147 -- 6.3.5 NEMX in Industrial Internet IoT Applications 147 -- 6.3.6 NEMX in Connected Car IoT Applications 148 -- 6.3.7 NEMX in Connected Health IoT Applications 150 -- 6.3.8 NEMX in Smart Retail IoT Applications 150 -- 6.3.9 NEMX in Smart Supply Chain IoT Applications 151 -- 6.3.10 NEMX in Smart Farming IoT Applications 151 -- 6.4 Applications in Wireless Sensor Networks 152 -- 6.4.1 NEMX-Based Radios for the IoT 154 -- 6.4.2 Agricultural Applications 157 -- 6.5 -- 5G: Systems 157 -- 6.6 -- 5G: Technologies 160
  • 6.6.1 Device-to-Device Communications 160 -- 6.6.2 Simultaneous Transmission/Reception 160 -- 6.6.3 mmWave/5G Frequencies for IoT 161 -- 6.7 Summary 161 Appendix A: MEMS Fabrication Techniques Fundamentals 163 A.1 Introduction 163 A.2 The Conventional IC Fabrication Process 163 A.3 Bulk Micromachining 164 A.4 Surface Micromachining 165 A.5 Materials Systems 167 A.6 Summary 168 Appendix B: Emerging Fabrication Technologies for the IoT: Flexible Substrates and Printed Electronics 169 B.1 Flexible Substrates 169 B.1.1 Device Fabrication on Flexible Substrates 171 B.1.1.1 Thin-Film Transistors (TFTs) 171 B.1.2 Film Bulk Acoustic Wave Resonators (FBARs) 172 B.2 Printed Electronics 173 B.2.1 Printing Technologies 174 B.2.1.1 Contact Printing Techniques 174 B.2.1.2 Non-Contact Printing Techniques 174 B.3 Summary 177 -- References 179 -- Index 193 -- About the Author 199
Control code
9218810
Dimensions
unknown
Extent
1 PDF (xxxi, 199 pages).
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9788770221276
Media category
electronic
Media MARC source
isbdmedia
Specific material designation
remote
System control number
  • (CaBNVSL)mat09218810
  • (IDAMS)0b0000648d199f3f
System details
Mode of access: World Wide Web

Library Locations

Processing Feedback ...