Coverart for item
The Resource Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Sotiris Nikoletseas, Yuanyuan Yang, Apostolos Georgiadis, editors

Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Sotiris Nikoletseas, Yuanyuan Yang, Apostolos Georgiadis, editors

Label
Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks
Title
Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks
Statement of responsibility
Sotiris Nikoletseas, Yuanyuan Yang, Apostolos Georgiadis, editors
Contributor
Subject
Language
eng
Cataloging source
IDEBK
Dewey number
  • 621.319
  • 004
Index
no index present
LC call number
  • TK3091
  • QA75.5-76.95
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • Nikoletseas, Sotiris
  • Yang, Yuanyuan
  • Georgiadis, Apostolos
http://library.link/vocab/subjectName
  • Wireless power transmission
  • Ad hoc networks (Computer networks)
Label
Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Sotiris Nikoletseas, Yuanyuan Yang, Apostolos Georgiadis, editors
Instantiates
Publication
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface; Acknowledgments; Contents; Contributors; Part I Technologies; 1 Non-radiative Wireless Power Transmission: Theory and Applications; 1.1 Introduction; 1.2 Two-Port Network Representation of a WPT Link; 1.2.1 Statement of the Problem; 1.2.2 Impedance Matrix Modeling of a WPT Link; 1.2.3 Admittance Matrix Modeling of a WPT Link; 1.3 Application of Theory: The Case of Two Coupled Inductances; 1.3.1 Coupled Inductances with a Capacitive T Network on the Primary Side; 1.4 Application of Theory: The Case of a Capacitive WPT Link; References; 2 Wireless Power Transfer Based on Metamaterials
  • 2.1 Introduction2.2 Metamaterials for WPT; 2.2.1 Metamaterials and Superlens; 2.2.2 Metamaterials and WPT; 2.2.3 Experimental Realization; 2.3 Array of Resonators for Mobile Power Transfer; 2.3.1 Array of Coupled Resonators; 2.3.2 Numerical Simulations and Circuit Analysis; 2.3.3 Experiment Demonstration; 2.4 Conclusion; References; 3 Optimal Array Beamforming for Microwave Power Transmission in Complex Environment; 3.1 Microwave Power Transmission System; 3.1.1 Problem Formulation; 3.1.2 Transmission Efficiency Based on Antenna Parameters
  • 3.1.3 Transmission Efficiency Based on Channel Transfer Function3.1.4 Experiment Study of Indoor MPT; 3.2 Review of Optimal Beamforming Techniques; 3.2.1 Array Factor Optimization; 3.2.2 Retrodirective Array/Phase Conjugate Array; 3.2.3 Adaptive Array Digital Beamforming; 3.3 Time Reversal Eigenmode Beamforming; 3.3.1 Pseudo Transmission Efficiency; 3.3.2 Transmission Efficiency Optimization; 3.3.3 Time Reversal Eigenmode Beamforming; 3.4 Numerical Examples; 3.4.1 Arbitrary Array Beamforming in Free Space; 3.4.2 Arbitrary Array Beam Steering
  • 3.4.3 Arbitrary Array Beamforming in Multipath Environment3.5 Conclusion; References; 4 Far-Field Wireless Power Transfer for IoT Sensors; 4.1 Introduction; 4.1.1 Near-Contact WPT; 4.1.2 Far-Field WPT; 4.2 Far-Field WPT Basics; 4.2.1 Power Density; 4.2.2 Wireless Power Transfer; 4.2.3 RF Harvesting from the Ambient; 4.3 Rectifier; 4.3.1 Equivalent Circuit Analysis; 4.3.2 Harmonic Current Analysis; 4.4 Cascaded Rectifiers; 4.5 Receive Antenna; 4.5.1 Antenna Input Impedance; 4.5.2 Antenna Integration Level; 4.5.3 Antenna Shielding; 4.5.4 Miniaturized Complex Conjugately Matched Antenna
  • 4.5.5 Miniature Shielded Antenna4.6 Rectenna; 4.6.1 Power Management; 4.6.2 Efficiency Evaluation; 4.6.3 Complete Rectenna; 4.7 Future Developments; 4.8 Conclusions; References; 5 Wireless Power Transfer: Discrete Rectifier Modeling and Analysis; 5.1 Introduction; 5.2 Rectifier Modeling; 5.2.1 I-V Relationship; 5.2.2 Macro Model; 5.2.3 Integrated Equivalent; 5.2.4 SPICE Model; 5.3 Circuit Analysis Techniques; 5.3.1 Software Tools; 5.3.2 Time Trajectory Technique; 5.3.3 Adaptive Input Power Algorithm; 5.3.4 Steady-State Algorithm; 5.4 Comparing Topologies; 5.4.1 Definition of Efficiency
Extent
1 online resource.
Form of item
online
Isbn
9783319468099
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
  • SPR964358627
  • ocn964358627
Label
Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks, Sotiris Nikoletseas, Yuanyuan Yang, Apostolos Georgiadis, editors
Publication
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Preface; Acknowledgments; Contents; Contributors; Part I Technologies; 1 Non-radiative Wireless Power Transmission: Theory and Applications; 1.1 Introduction; 1.2 Two-Port Network Representation of a WPT Link; 1.2.1 Statement of the Problem; 1.2.2 Impedance Matrix Modeling of a WPT Link; 1.2.3 Admittance Matrix Modeling of a WPT Link; 1.3 Application of Theory: The Case of Two Coupled Inductances; 1.3.1 Coupled Inductances with a Capacitive T Network on the Primary Side; 1.4 Application of Theory: The Case of a Capacitive WPT Link; References; 2 Wireless Power Transfer Based on Metamaterials
  • 2.1 Introduction2.2 Metamaterials for WPT; 2.2.1 Metamaterials and Superlens; 2.2.2 Metamaterials and WPT; 2.2.3 Experimental Realization; 2.3 Array of Resonators for Mobile Power Transfer; 2.3.1 Array of Coupled Resonators; 2.3.2 Numerical Simulations and Circuit Analysis; 2.3.3 Experiment Demonstration; 2.4 Conclusion; References; 3 Optimal Array Beamforming for Microwave Power Transmission in Complex Environment; 3.1 Microwave Power Transmission System; 3.1.1 Problem Formulation; 3.1.2 Transmission Efficiency Based on Antenna Parameters
  • 3.1.3 Transmission Efficiency Based on Channel Transfer Function3.1.4 Experiment Study of Indoor MPT; 3.2 Review of Optimal Beamforming Techniques; 3.2.1 Array Factor Optimization; 3.2.2 Retrodirective Array/Phase Conjugate Array; 3.2.3 Adaptive Array Digital Beamforming; 3.3 Time Reversal Eigenmode Beamforming; 3.3.1 Pseudo Transmission Efficiency; 3.3.2 Transmission Efficiency Optimization; 3.3.3 Time Reversal Eigenmode Beamforming; 3.4 Numerical Examples; 3.4.1 Arbitrary Array Beamforming in Free Space; 3.4.2 Arbitrary Array Beam Steering
  • 3.4.3 Arbitrary Array Beamforming in Multipath Environment3.5 Conclusion; References; 4 Far-Field Wireless Power Transfer for IoT Sensors; 4.1 Introduction; 4.1.1 Near-Contact WPT; 4.1.2 Far-Field WPT; 4.2 Far-Field WPT Basics; 4.2.1 Power Density; 4.2.2 Wireless Power Transfer; 4.2.3 RF Harvesting from the Ambient; 4.3 Rectifier; 4.3.1 Equivalent Circuit Analysis; 4.3.2 Harmonic Current Analysis; 4.4 Cascaded Rectifiers; 4.5 Receive Antenna; 4.5.1 Antenna Input Impedance; 4.5.2 Antenna Integration Level; 4.5.3 Antenna Shielding; 4.5.4 Miniaturized Complex Conjugately Matched Antenna
  • 4.5.5 Miniature Shielded Antenna4.6 Rectenna; 4.6.1 Power Management; 4.6.2 Efficiency Evaluation; 4.6.3 Complete Rectenna; 4.7 Future Developments; 4.8 Conclusions; References; 5 Wireless Power Transfer: Discrete Rectifier Modeling and Analysis; 5.1 Introduction; 5.2 Rectifier Modeling; 5.2.1 I-V Relationship; 5.2.2 Macro Model; 5.2.3 Integrated Equivalent; 5.2.4 SPICE Model; 5.3 Circuit Analysis Techniques; 5.3.1 Software Tools; 5.3.2 Time Trajectory Technique; 5.3.3 Adaptive Input Power Algorithm; 5.3.4 Steady-State Algorithm; 5.4 Comparing Topologies; 5.4.1 Definition of Efficiency
Extent
1 online resource.
Form of item
online
Isbn
9783319468099
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Specific material designation
remote
System control number
  • SPR964358627
  • ocn964358627

Library Locations

Processing Feedback ...