Probability distributions : with truncated, log and bivariate extensions
Resource Information
The work Probability distributions : with truncated, log and bivariate extensions represents a distinct intellectual or artistic creation found in University of Liverpool. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Probability distributions : with truncated, log and bivariate extensions
Resource Information
The work Probability distributions : with truncated, log and bivariate extensions represents a distinct intellectual or artistic creation found in University of Liverpool. This resource is a combination of several types including: Work, Language Material, Books.
- Label
- Probability distributions : with truncated, log and bivariate extensions
- Title remainder
- with truncated, log and bivariate extensions
- Statement of responsibility
- Nick T. Thomopoulos
- Language
- eng
- Summary
- This volume presents a concise and practical overview of statistical methods and tables not readily available in other publications. It begins with a review of the commonly used continuous and discrete probability distributions. Several useful distributions that are not so common and less understood are described with examples and applications in full detail: discrete normal, left-partial, right-partial, left-truncated normal, right-truncated normal, lognormal, bivariate normal, and bivariate lognormal. Table values are provided with examples that enable researchers to easily apply the distributions to real applications and sample data. The left- and right-truncated normal distributions offer a wide variety of shapes in contrast to the symmetrically shaped normal distribution, and a newly developed spread ratio enables analysts to determine which of the three distributions best fits a particular set of sample data. The book will be highly useful to anyone who does statistical and probability analysis. This includes scientists, economists, management scientists, market researchers, engineers, mathematicians, and students in many disciplines. Nick T. Thomopoulos, Ph.D., has degrees in business (B.S.) and in mathematics (M.A.) from the University of Illinois, and in industrial engineering (Ph.D.) from Illinois Institute of Technology (Illinois Tech). He was supervisor of operations research at International Harvester; senior scientist at the IIT Research Institute; and Professor in Industrial Engineering and in the Stuart School of Business at Illinois Tech. He is the author of eleven books including Fundamentals of Queuing Systems (Springer), Essentials of Monte Carlo Simulation (Springer), Applied Forecasting Methods (Prentice Hall), and Fundamentals of Production, Inventory and the Supply Chain (Atlantic). He has published many papers and has consulted in a wide variety of industries in the United States, Europe and Asia. Dr. Thomopoulos has received honors over the years, such as the Rist Prize from the Military Operations Research Society for new developments in queuing theory; the Distinguished Professor Award in Bangkok, Thailand from the Illinois Tech Asian Alumni Association; and the Professional Achievement Award from the Illinois Tech Alumni Association.--
- Assigning source
- Provided by publisher
- Cataloging source
- N$T
- Dewey number
- 519.24
- Index
- index present
- LC call number
- QA273.6
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
Context
Context of Probability distributions : with truncated, log and bivariate extensionsWork of
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/Cmn0gG4Vjnc/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/Cmn0gG4Vjnc/">Probability distributions : with truncated, log and bivariate extensions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Work Probability distributions : with truncated, log and bivariate extensions
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/Cmn0gG4Vjnc/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/Cmn0gG4Vjnc/">Probability distributions : with truncated, log and bivariate extensions</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>