Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua
Resource Information
The instance Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua represents a material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
The Resource
Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua
Resource Information
The instance Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua represents a material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
- Label
- Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua
- Statement of responsibility
- Liqiang Nie, Xuemeng Song, and Tat-Seng Chua
- Bibliography note
- Includes bibliographical references (pages 87-100)
- Carrier category
- online resource
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type MARC source
- rdacontent
- Contents
-
- 1. Introduction -- 1.1 Background -- 1.2 Motivation -- 1.3 Challenges -- 1.4 Our solutions and applications -- 1.5 Outline of this book --
- 2. Data gathering and completion -- 2.1 User accounts alignment -- 2.2 Missing data problems -- 2.3 Matrix factorization for data completion -- 2.4 Multiple social networks data completion -- 2.5 Summary --
- 3. Multi-source mono-task learning -- 3.1 Application: volunteerism tendency prediction -- 3.2 Related work -- 3.2.1 Volunteerism and personality analysis -- 3.2.2 Multi-view learning with missing data -- 3.3 Multiple social network learning -- 3.3.1 Notation -- 3.3.2 Problem formulations -- 3.3.3 Optimization -- 3.4 Experimentation -- 3.4.1 Experimental settings -- 3.4.2 Feature extraction -- 3.4.3 Model comparison -- 3.4.4 Data completion comparison -- 3.4.5 Feature comparison -- 3.4.6 Source comparison -- 3.4.7 Size varying of positive samples -- 3.4.8 Complexity discussion -- 3.5 Summary --
- 4. Mono-source multi-task learning -- 4.1 Application: user interest inference from mono-source -- 4.2 Related work -- 4.2.1 Clustered multi-task learning -- 4.2.2 User interest mining -- 4.3 Efficient clustered multi-task learning -- 4.3.1 Notation -- 4.3.2 Problem formulation -- 4.3.3 Grouping structure learning -- 4.3.4 Efficient clustered multi-task learning -- 4.4 Experimentation -- 4.4.1 Experimental settings -- 4.4.2 Feature extraction -- 4.4.3 Evaluation metric -- 4.4.4 Parameter tuning -- 4.4.5 Model comparison -- 4.4.6 Necessity of structure learning -- 4.5 Summary --
- 5. Multi-source multi-task learning -- 5.1 Application: user interest inference from multi-source -- 5.2 Related work -- 5.3 Multi-source multi-task learning -- 5.3.1 Notation -- 5.3.2 Problem formulations -- 5.3.3 Optimization -- 5.3.4 Construction of interest tree structure -- 5.4 Experiments -- 5.4.1 Experimental settings -- 5.4.2 Model comparison -- 5.4.3 Source comparison -- 5.4.4 Complexity discussion -- 5.5 Summary --
- 6. Multi-source multi-task learning with feature selection -- 6.1 Application: user attribute learning from multimedia data -- 6.2 Related work -- 6.3 Data construction -- 6.3.1 Data crawling strategy -- 6.3.2 Ground truth construction -- 6.4 Multi-source multi-task learning with Fused Lasso -- 6.5 Optimization -- 6.6 Experiments -- 6.6.1 Experimental settings -- 6.6.2 Feature extraction -- 6.6.3 Overall model evaluation -- 6.6.4 Component-wise analysis -- 6.6.5 Source integration -- 6.6.6 Parameter tuning -- 6.6.7 Computational analysis -- 6.7 Other application -- 6.8 Summary --
- 7. Research frontiers -- Bibliography -- Authors' biographies
- Control code
- 201603ICR048
- Dimensions
- unknown
- Extent
- 1 PDF (xv, 102 pages)
- File format
- multiple file formats
- Form of item
- online
- Isbn
- 9781627059862
- Media category
- electronic
- Media MARC source
- isbdmedia
- Other control number
- 10.2200/S00714ED1V01Y201603ICR048
- Other physical details
- illustrations.
- Record ID
- b4048147
- Reformatting quality
- access
- Specific material designation
- remote
- System details
- System requirements: Adobe Acrobat Reader
Context
Context of Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng ChuaInstantiates
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/IjaZqS-7SVA/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/IjaZqS-7SVA/">Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/IjaZqS-7SVA/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/IjaZqS-7SVA/">Learning from multiple social networks, Liqiang Nie, Xuemeng Song, and Tat-Seng Chua</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>