Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
Resource Information
The instance Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book) represents a material embodiment of a distinct intellectual or artistic creation found in University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
The Resource
Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
Resource Information
The instance Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book) represents a material embodiment of a distinct intellectual or artistic creation found in University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
- Label
- Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
- Title remainder
- modeling, testing, and materials
- Medium
- electronic book
- Statement of responsibility
- edited by Andreas Öchsner, Waqar Ahmed
- Antecedent source
- unknown
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- 1.1.2.
- Growth of Living Organisms
- 1.1.2.1.
- Ring-Shaped Grain Boundary
- 1.1.3.
- Planarity of Biological Structures
- 1.2.
- Macroscopic Structure of the Bone
- 1.2.1.
- Growth of the Bone
- Machine generated contents note:
- 1.2.2.
- Structure of the Body
- 1.2.3.
- Macroscopic Structure of Skeleton
- 1.2.4.
- Apatite in the Bone
- 1.2.5.
- Structure of the Bone
- 1.3.
- Microscopic Structure of the Bone
- 1.
- 1.3.1.
- General
- 1.3.2.
- Osteon
- 1.3.3.
- Bone Innervation
- 1.3.3.1.
- Anatomy of Bone Innervation
- 1.3.4.
- Bone Cells
- Bone and Cartilage -- its Structure and Physical Properties
- 1.3.4.1.
- Cells
- 1.3.4.2.
- Cell Membrane
- 1.3.4.3.
- Membrane Transport
- 1.3.4.4.
- Bone Cell Types
- 1.3.4.5.
- Osteoclasts
- Ryszard Wojnar
- 1.3.5.
- Cellular Image -- OPG/RANK/RANKL Signaling System
- 1.3.5.1.
- Osteoprotegerin
- 1.3.5.2.
- RANK/RANKL
- 1.3.5.3.
- TACE
- 1.3.5.4.
- Bone Modeling and Remodeling
- 1.1.
- 1.3.6.
- Proteins and Amino Acids
- Introduction
- 1.1.1.
- The Structure of Living Organisms
- 1.3.9.1.
- Thermodynamics
- 1.3.9.2.
- Ideal Chain
- 1.3.9.3.
- Wormlike Chain
- 1.3.9.4.
- Architecture of Biological Fibers
- 1.3.9.5.
- Architecture of Collagen Fibers in Human Osteon
- 1.3.7.
- 1.3.9.6.
- Collagen Elasticity
- 1.4.
- Remarks and Conclusions
- 1.5.
- Comments
- 1.6.
- Acknowledgments
- References
- Further Reading
- Collagen and its Properties
- 2.
- Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements
- Carlos R. M. Roesler
- 2.1.
- Introduction
- 2.2.
- Mechanical Adaptation of Bone
- 2.3.
- Constitutive Models
- 2.3.1.
- 1.3.7.1.
- Bone Constitutive Model
- 2.3.2.
- Interface Constitutive Model
- 2.3.3.
- Model for Periprosthetic Adaptation
- 2.3.4.
- Model for Interfacial Adaptation
- 2.4.
- Numerical Examples
- 2.5.
- Molecular Structure
- Final Remarks
- 2.6.
- Acknowledgments
- References
- 3.
- Bone as a Composite Material
- Virginia L. Ferguson
- 3.1.
- Introduction
- 3.2.
- 1.3.8.
- Bone Phases
- 3.2.1.
- Organic
- Geometry of Triple Helix
- 1.3.9.
- Polymer Thermodynamics
- 3.3.1.
- Organic Matrix
- 3.3.2.
- Mineral Phase
- 3.3.3.
- Water
- 3.3.4.
- Elastic Modulus of Composite Materials
- 3.4.
- Bone as a Composite: Macroscopic Effects
- 3.2.2.
- 3.5.
- Bone as a Composite: Microscale Effects
- 3.6.
- Bone as a Composite: Anisotropy Effects
- 3.7.
- Bone as a Composite: Implications
- References
- 4.
- Mechanobiological Models for Bone Tissue. Applications to Implant Design
- Manuel Doblare
- Mineral
- 4.1.
- Introduction
- 4.2.
- Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing
- 4.2.1.
- Bone Remodeling
- 4.2.2.
- Bone Fracture Healing
- 4.3.
- Phenomenological Models of Bone Remodeling
- 3.2.3.
- 4.4.
- Mechanistic Models of Bone Remodeling
- 4.5.
- Examples of Application of Bone Remodeling Models to Implant Design
- 4.6.
- Models of Tissue Differentiation. Application to Bone Fracture Healing
- 4.7.
- Mechanistic Models of Bone Fracture Healing
- 4.8.
- Examples of Application of Bone Fracture Healing Models to Implant Design
- Physical Structure of Bone Material
- 3.2.4.
- Water
- 3.3.
- Bone Phase Material Properties
- 5.2.
- Tribological Testing of Orthopedic Implants
- 5.3.
- Tribological Testing of Tissue from a Living Body
- 5.4.
- Theoretical Analysis for Tribological Issues
- References
- 6.
- Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches
- Seyed Mohammad Hossein Hosseini
- 4.9.
- 6.1.
- Introduction
- 6.2.
- Summary of Elasticity Theory and Continuum Mechanics
- 6.2.1.
- Stress Tensor and Decomposition
- 6.2.2.
- Invariants
- 6.3.
- Constitutive Equations
- Concluding Remarks
- 6.3.1.
- Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials
- 6.3.2.
- Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials
- 6.3.3.
- Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure
- 6.3.4.
- Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials
- 6.3.5.
- Plastic Behavior, Failure, and Limit Surface
- References
- 6.4.
- The Structure of Trabecular Bone and Modeling Approaches
- 5.
- Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation
- Yoshitaka Nakanishi
- 5.1.
- Introduction
- 7.1.
- Introduction
- 7.2.
- Mechanical Stimulation on Cells
- 7.2.1.
- Various Mechanical Stimulations
- 7.2.2.
- Techniques for Applying Mechanical Loading
- 7.2.3.
- Mechanotransduction
- 6.4.1.
- 7.2.4.
- Mechanical Influences on Stem Cell
- 7.3.
- Magnetic Stimulation on Cells
- 7.3.1.
- Magnetic Nanoparticles for Cell Stimulation
- 7.3.1.1.
- Properties of Magnetic Nanoparticles
- 7.3.1.2.
- Functionalization of Magnetic Nanoparticles
- Structural Analogies: Cellular Plastics and Metals
- 7.3.2.
- Magnetic Stimulation
- 7.3.2.1.
- Magnetic Pulling
- 7.3.2.2.
- Magnetic Twisting
- 7.3.3.
- Limitation of Using Magnetic Nanoparticles for Cell Stimulation
- 7.3.4.
- Magnetic Stimulation and Cell Conditioning for Tissue Regeneration
- 6.5.
- 7.4.
- Summary
- References
- 8.
- Joint Replacement Implants
- Duncan E. T. Shepherd
- 8.1.
- Introduction
- 8.2.
- Biomaterials for Joint Replacement Implants
- Conclusions
- 8.3.
- Joint Replacement Implants for Weight-Bearing Joints
- 8.3.1.
- Introduction
- 8.3.2.
- Hip Joint Replacement
- References
- 7.
- Mechanical and Magnetic Stimulation on Cells for Bone Regeneration
- Kuo-Kang Liu
- 8.4.1.
- Introduction
- 8.4.2.
- Finger Joint Replacement
- 8.4.3.
- Wrist Joint Replacement
- 8.5.
- Design of Joint Replacement Implants
- 8.5.1.
- Introduction
- 8.3.3.
- 8.5.2.
- Feasibility
- 8.5.3.
- Design
- 8.5.4.
- Verification
- 8.5.5.
- Manufacture
- 8.5.6.
- Validation
- Knee Joint Replacement
- 8.5.7.
- Design Transfer
- 8.5.8.
- Design Changes
- 8.6.
- Conclusions
- References
- 9.
- Interstitial Fluid Movement in Cortical Bone Tissue
- Stephen C. Cowin
- 8.3.4.
- 9.1.
- Introduction
- 9.2.
- Arterial Supply
- 9.2.1.
- Overview of the Arterial System in Bone
- 9.2.2.
- Dynamics of the Arterial System
- 9.2.3.
- Transcortical Arterial Hemodynamics
- Ankle Joint Replacement
- 9.2.4.
- The Arterial System in Small Animals may be Different from that in Humans
- 9.3.
- Microvascular Network of the Medullary Canal
- 9.4.
- Microvascular Network of Cortical Bone
- 9.5.
- Venous Drainage of Bone
- 9.6.
- Bone Lymphatics and Blood Vessel Trans-Wall Transport
- 8.3.5.
- Methods of Fixation for Weight-Bearing Joint Replacement Implants
- 8.4.
- Joint Replacement Implants for Joints of the Hand and Wrist
- 9.7.4.
- Cancellous Bone Porosity
- 9.7.5.
- The Interfaces between the Levels of Bone Porosity
- 9.8.
- Interstitial Fluid Flow
- 9.8.1.
- The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure)
- 9.8.2.
- Interstitial Flow and Mechanosensation
- 9.7.
- 9.8.3.
- Electrokinetic Effects in Bone
- 9.8.4.
- The Poroelastic Model for the Cortical Bone
- 9.8.5.
- Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities
- 9.8.6.
- Implications for the Determination of the Permeabilities
- References
- 10.
- The Levels of Bone Porosity and their Bone Interfaces
- Bone Implant Design Using Optimization Methods
- Joao Folgado
- 10.1.
- Introduction
- 10.2.
- Optimization Methods for Implant Design
- 10.2.1.
- Cemented Stems
- 10.2.2.
- Uncemented Stems
- 9.7.1.
- 10.3.
- Design Requirements for a Cementless Hip Stem
- 10.3.1.
- Implant Stability
- 10.3.2.
- Stress Shielding Effect
- The Vascular Porosity (PV)
- 9.7.2.
- The Lacunar-Canalicular Porosity (PLC)
- 9.7.3.
- The Collagen-Hydroxyapatite Porosity (PCA)
- 10.4.4.
- Objective Function for Bone Remodeling
- 10.4.5.
- Multicriteria Objective Function
- 10.5.
- Computational Model
- 10.5.1.
- Optimization Algorithm
- 10.5.2.
- Finite Element Model
- 10.4.
- 10.6.
- Optimal Geometries Analysis
- 10.6.1.
- Optimal Geometry for Tangential Interfacial Displacement -- fd
- 10.6.2.
- Optimal Geometry for Normal Contact Stress -ft
- 10.6.3.
- Optimal Geometry for Remodeling -fr
- 10.6.4.
- Multicriteria Optimal Geometries -fmc
- Multicriteria Formulation for Hip Stem Design
- 10.7.
- Long-Term Performance of Optimized Implants
- 10.8.
- Concluding Remarks
- References
- 10.4.1.
- Design Variables and Geometry
- 10.4.2.
- Objective Function for Interface Displacement
- 10.4.3.
- Objective Function for Interface Stress
- Control code
- ocn758389527
- Dimensions
- unknown
- Extent
- 1 online resource (xvi, 306 p.)
- File format
- unknown
- Form of item
-
- online
- electronic
- Isbn
- 9783527632732
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Other physical details
- ill. (some col.).
- Quality assurance targets
- not applicable
- Record ID
- b3137165
- Reformatting quality
- unknown
- Reproduction note
- Electronic resource
- Sound
- unknown sound
- Specific material designation
- remote
Context
Context of Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/JLfblgVcYko/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/JLfblgVcYko/">Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/JLfblgVcYko/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/JLfblgVcYko/">Biomechanics of hard tissues : modeling, testing, and materials, edited by Andreas Öchsner, Waqar Ahmed, (electronic book)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>