Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara
Resource Information
The instance Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara represents a material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
The Resource
Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara
Resource Information
The instance Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara represents a material embodiment of a distinct intellectual or artistic creation found in Sydney Jones Library, University of Liverpool. This resource is a combination of several types including: Instance, Electronic.
- Label
- Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara
- Title remainder
- a hands-on approach to implementing algorithms in Python and R
- Statement of responsibility
- V. Kishore Ayyadevara
- Antecedent source
- unknown
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Intro; Table of Contents; About the Author; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Basics of Machine Learning; Regression and Classification; Training and Testing Data; The Need for Validation Dataset; Measures of Accuracy; Absolute Error; Root Mean Square Error; Confusion Matrix; AUC Value and ROC Curve; Unsupervised Learning; Typical Approach Towards Building a Model; Where Is the Data Fetched From?; Which Data Needs to Be Fetched?; Pre-processing the Data; Feature Interaction; Feature Generation; Building the Models; Productionalizing the Models
- Build, Deploy, Test, and IterateSummary; Chapter 2: Linear Regression; Introducing Linear Regression; Variables: Dependent and Independent; Correlation; Causation; Simple vs. Multivariate Linear Regression; Formalizing Simple Linear Regression; The Bias Term; The Slope; Solving a Simple Linear Regression; More General Way of Solving a Simple Linear Regression; Minimizing the Overall Sum of Squared Error; Solving the Formula; Working Details of Simple Linear Regression; Complicating Simple Linear Regression a Little; Arriving at Optimal Coefficient Values; Introducing Root Mean Squared Error
- Running a Simple Linear Regression in RResiduals; Coefficients; SSE of Residuals (Residual Deviance); Null Deviance; R Squared; F-statistic; Running a Simple Linear Regression in Python; Common Pitfalls of Simple Linear Regression; Multivariate Linear Regression; Working details of Multivariate Linear Regression; Multivariate Linear Regression in R; Multivariate Linear Regression in Python; Issue of Having a Non-significant Variable in the Model; Issue of Multicollinearity; Mathematical Intuition of Multicollinearity; Further Points to Consider in Multivariate Linear Regression
- Assumptions of Linear RegressionSummary; Chapter 3: Logistic Regression; Why Does Linear Regression Fail for Discrete Outcomes?; A More General Solution: Sigmoid Curve; Formalizing the Sigmoid Curve (Sigmoid Activation); From Sigmoid Curve to Logistic Regression; Interpreting the Logistic Regression; Working Details of Logistic Regression; Estimating Error; Scenario 1; Scenario 2; Least Squares Method and Assumption of Linearity; Running a Logistic Regression in R; Running a Logistic Regression in Python; Identifying the Measure of Interest; Common Pitfalls
- Time Between Prediction and the Event HappeningOutliers in Independent variables; Summary; Chapter 4: Decision Tree; Components of a Decision Tree; Classification Decision Tree When There Are Multiple Discrete Independent Variables; Information Gain; Calculating Uncertainty: Entropy; Calculating Information Gain; Uncertainty in the Original Dataset; Measuring the Improvement in Uncertainty; Which Distinct Values Go to the Left and Right Nodes; Gini Impurity; Splitting Sub-nodes Further; When Does the Splitting Process Stop?; Classification Decision Tree for Continuous Independent Variables
- Dimensions
- unknown
- Extent
- 1 online resource
- File format
- unknown
- Form of item
- online
- Isbn
- 9781484235645
- Level of compression
- unknown
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Quality assurance targets
- not applicable
- Record ID
- b5439547
- Reformatting quality
- unknown
- Sound
- unknown sound
- Specific material designation
- remote
- System control number
-
- on1042561229
- (OCoLC)1042561229
Context
Context of Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore AyyadevaraEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/osZC1unC9bM/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/osZC1unC9bM/">Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/osZC1unC9bM/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/osZC1unC9bM/">Pro machine learning algorithms : a hands-on approach to implementing algorithms in Python and R, V. Kishore Ayyadevara</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">Sydney Jones Library, University of Liverpool</a></span></span></span></span></div>