Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov
Resource Information
The instance Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov represents a material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
The Resource
Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov
Resource Information
The instance Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov represents a material embodiment of a distinct intellectual or artistic creation found in University of Liverpool.
- Label
- Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov
- Statement of responsibility
- Vassili N. Kolokoltsov
- Bibliography note
- Includes bibliographical references (p. [329]-345) and index
- Carrier category
- volume
- Carrier category code
-
- nc
- Carrier MARC source
- rdacarrier
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Introduction.
- p. 1
- Ch. 1.
- Gaussian diffusions
- 1.
- Gaussian diffusion. Probabilistic and analytic approaches.
- p. 17
- 2.
- Classification of Gaussian diffusions by the Young schemes.
- p. 20
- 3.
- Long time behaviour of the Green functions of Gaussian diffusions.
- p. 25
- 4.
- Complex stochastic Gaussian diffusion.
- p. 28
- 5.
- rate of escape for Gaussian diffusions and scattering for its perturbations.
- p. 34
- Ch. 2.
- Boundary value problem for Hamiltonian systems
- 1.
- Rapid course in calculus of variations.
- p. 40
- 2.
- Boundary value problem for non-degenerate Hamiltonians.
- p. 50
- 3.
- Regular degenerate Hamiltonians of the first rank.
- p. 59
- 4.
- General regular Hamiltonians depending quadratically on momenta.
- p. 72
- 5.
- Hamiltonians of exponential growth in momenta.
- p. 75
- 6.
- Complex Hamiltonians and calculus of variations of saddle-points.
- p. 87
- 7.
- Stochastic Hamiltonians.
- p. 92
- Ch. 3.
- Semiclassical approximation for regular diffusion
- 1.
- Main ideas of the WKB-method with imaginary phase.
- p. 97
- 2.
- Calculation of the two-point function for regular Hamiltonians.
- p. 104
- 3.
- Asymptotic solutions of the transport equation.
- p. 110
- 4.
- Local asymptotics of the Green function for regular Hamiltonians.
- p. 112
- 5.
- Global small diffusion asymptotics and large deviations.
- p. 119
- 6.
- Asymptotics for non-regular diffusion: an example.
- p. 124
- 7.
- Analytic solutions to some linear PDE.
- p. 128
- Ch. 4.
- Invariant degenerate diffusion on cotangent bundles
- 1.
- Curvilinear Ornstein-Uhlenbeck process and stochastic geodesic flow.
- p. 136
- 2.
- Small time asymptotics for stochastic geodesic flow.
- p. 140
- 3.
- trace of the Green function and geometric invariants.
- p. 143
- Ch. 5.
- Transition probability densities for stable jump-diffusion
- 1.
- Asymptotic properties of one-dimensional stable laws.
- p. 146
- 2.
- Asymptotic properties of finite-dimensional stable laws.
- p. 149
- 3.
- Transition probability densities for stable jump-diffusion.
- p. 161
- 4.
- Stable jump-diffusions combined with compound Poisson processes.
- p. 178
- 5.
- Stable-like processes.
- p. 182
- 6.
- Applications to the sample path properties of stable jump-diffusions.
- p. 187
- Ch. 6.
- Semiclassical asymptotics for the localised Feller-Courrege processes
- 1.
- Maslov's tunnel equations and the Feller-Courrege processes.
- p. 191
- 2.
- Rough local asymptotics and local large deviations.
- p. 194
- 3.
- Refinement and globalisation.
- p. 217
- Ch. 7.
- Complex stochastic diffusions or stochastic Schrodinger equations
- 1.
- Semiclassical approximation: formal asymptotics.
- p. 223
- 2.
- Semiclassical approximation: justification and globalisation.
- p. 229
- 3.
- Applications: two-sided estimates to complex heat kernels, large deviation principle, well-posedness of the Cauchy problem.
- p. 235
- 4.
- Path integration and infinite-dimensional saddle-point method.
- p. 236
- Ch. 8.
- Some topics in semiclassical spectral analysis
- 1.
- Double-well splitting.
- p. 239
- 2.
- Low lying eigenvalues of diffusion operators and the life-times of diffusion processes.
- p. 247
- 3.
- Quasi-modes of diffusion operators around a closed orbit of the corresponding classical system.
- p. 252
- Ch. 9.
- Path integration for the Schrodinger, heat and complex stochastic diffusion equations
- 1.
- Introduction.
- p. 255
- 2.
- Path integral for the Schrodinger equation in p-representation.
- p. 263
- 3.
- Path integral for the Schrodinger equation in x-representation.
- p. 267
- 4.
- Singular potentials.
- p. 269
- 5.
- Semiclassical asymptotics.
- p. 272
- 6.
- Fock space representation.
- p. 276
- App. A.
- Main equation of the theory of continuous quantum measurements.
- p. 280
- App. B.
- Asymptotics of Laplace integrals with complex phase.
- p. 283
- App. C.
- Characteristic functions of stable laws.
- p. 293
- App. D.
- Levy-Khintchine [Psi]DO and Feller-Courrege processes.
- p. 298
- App. E.
- Equivalence of convex functions.
- p. 303
- App. F.
- Unimodality of symmetric stable laws.
- p. 305
- App. G.
- Infinite divisible complex distributions and complex Markov processes.
- p. 312
- App. H.
- review of main approaches to the rigorous construction of path integral.
- p. 322
- App. I.
- Perspectives and problems.
- p. 326
- References.
- p. 329
- Main notations.
- p. 346
- Subject Index.
- p. 347
- Control code
- l80000026545
- Dimensions
- 24 cm.
- Extent
- viii, 345 p.
- Isbn
- 9783540669722
- Lccn
- lc00026545
- Media category
- unmediated
- Media MARC source
- rdamedia
- Media type code
-
- n
- Other physical details
- ill.
- Record ID
- b1948076
Context
Context of Semiclassical analysis for diffusions and stochastic processes, Vassili N. KolokoltsovEmbed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/qyySpJfXraE/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/qyySpJfXraE/">Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Instance Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.liverpool.ac.uk/resource/qyySpJfXraE/" typeof="Book http://bibfra.me/vocab/lite/Instance"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.liverpool.ac.uk/resource/qyySpJfXraE/">Semiclassical analysis for diffusions and stochastic processes, Vassili N. Kolokoltsov</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.liverpool.ac.uk/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.liverpool.ac.uk/">University of Liverpool</a></span></span></span></span></div>