Coverart for item
The Resource Subwavelength and nanometer diameter optical fibers, Limin Tong, Michael Sumetsky, (electronic book)

Subwavelength and nanometer diameter optical fibers, Limin Tong, Michael Sumetsky, (electronic book)

Label
Subwavelength and nanometer diameter optical fibers
Title
Subwavelength and nanometer diameter optical fibers
Statement of responsibility
Limin Tong, Michael Sumetsky
Creator
Contributor
Subject
Language
eng
Member of
Cataloging source
QE2
http://library.link/vocab/creatorName
Tong, Limin
Dewey number
621.3692
Illustrations
illustrations
Index
index present
LC call number
TA1800
LC item number
.T66 2010
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Sumetsky, Michael
Series statement
Advanced topics in science and technology in China,
http://library.link/vocab/subjectName
  • Optical fibers
  • Nanotechnology
  • Electrical engineering
  • Engineering
Label
Subwavelength and nanometer diameter optical fibers, Limin Tong, Michael Sumetsky, (electronic book)
Instantiates
Publication
Note
Title from PDF title page
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
Cover13; -- Preface -- Table of Contents13; -- 1 Introduction -- 1.1 A Brief History of Micro- and Nanofibers -- 1.2 Concepts of MNFs and the Scope of this Book -- References -- 2 Optical Waveguiding Properties of MNFs: Theory and Numerical Simulations -- 2.1 Basic Guiding Properties of Ideal MNFs -- 2.1.1 Mathematic Model -- 2.1.2 Single-mode Condition and Fundamental Modes -- 2.1.3 Fractional Power Inside the Core and Effective Diameter -- 2.1.4 Group Velocity and Waveguide Dispersion -- 2.2 Theory of MNFs with Microscopic Nonuniformities -- 2.2.1 Basic Equations -- 2.2.2 Conventional and Adiabatic Perturbation Theory -- 2.2.3 Transmission Loss Caused by a Weak and Smooth Nonuniformity -- 2.3 Theory of MNF Tapers -- 2.3.1 Semiclassical Solution of the Wave Equation in the Adiabatic Approximation and Expression of Radiation Loss -- 2.3.2 Optics of Light Propagation Along the Adiabatic MNF Tapers -- 2.3.3 Example of a Conical MNF Taper -- 2.3.4 Example of a Biconical MNF Taper -- 2.3.5 Example of an MNF Taper with Distributed Radiation Loss -- 2.4 The Thinnest MNF Optical Waveguide -- 2.5 Evanescent Coupling between Parallel MNFs: 3D-FDTD Simulation -- 2.5.1 Model for FDTD Simulation -- 2.5.2 Evanescent Coupling between two Identical Silica MNFs -- 2.5.3 Evanescent Coupling between two Silica MNFs with Different Diameters -- 2.5.4 Evanescent Coupling between a Silica MNF and a Tellurite MNF -- 2.6 Endface Output Patterns -- 2.6.1 MNFs with Flat Endfaces -- 2.6.2 MNFs with Angled Endfaces -- 2.6.3 MNFs with Spherical and Tapered Endfaces -- 2.7 MNF Interferometers and Resonators -- 2.7.1 MNF Mach-Zehnder and Sagnac Interferometers -- 2.7.2 MNF Loop Resonators -- 2.7.3 MNF Coil Resonators -- References -- 3 Fabrication of MNFs -- 3.1 Taper Drawing Techniques -- 3.2 Taper-drawing Fabrication of Glass MNFs -- 3.2.1 Taper Grawing MNFs Rom Glass Fibers -- 3.2.2 Drawing MNFs Directly from Bulk Glasses -- 3.3 Drawing Polymer MNFs from Solutions -- References -- 4 Properties of MNFs: Experimental Investigations -- 4.1 Micro/Nanomanipulation and Mechanical Properties of MNFs -- 4.1.1 Visibility of MNFs -- 4.1.2 MNF Manipulation -- 4.1.3 Tensile Strengths of MNFs -- 4.2 Optical Properties -- 4.2.1 Optical Losses -- 4.2.2 Effect of the Substrate -- References -- 5 MNF-based Photonic Components and Devices -- 5.1 Linear Waveguides and Waveguide Bends -- 5.1.1 Linear Waveguides -- 5.1.2 Waveguide Bends -- 5.2 Micro-couplers, Mach-Zehnder and Sagnac Interferometers -- 5.2.1 Micro-couplers -- 5.2.2 Mach-Zehnder Interferometers -- 5.2.3 Sagnac Interferometers -- 5.3 MNF Loop and Coil Resonators -- 5.3.1 MNF Loop Resonator (MLR) Fabricated by Macro-Manipulation -- 5.3.2 Knot MLR Fabricated by Micro-Manipulation -- 5.3.3 Experimental Demonstration of MCR -- 5.4 MNF Filters -- 5.4.1 Short-Pass Filters -- 5.4.2 Add-Drop Filters -- 5.5 MNF Lasers -- 5.5.1 Modeling MNF Ring Lasers -- 5.5.2 Numerical Simulation of Er3+ and Yb3+ Doped MNF Ring Lasers -- 5.5.3 Er3+ and Yb3+ Codoped MNF Ring Lasers -- 5.5.4 Evanescent-Wave-Coupled MNF Dye Lasers -- References -- 6 Micro/nanofiber Optical Sensors -- 6.1 Introduction -- 6.2 Application of a Straight MNF for Sensing -- 6.2.1 Microfluidic Refractive Index MNF Sensor -- 6.2.2 Hydrogen MNF Sensor -- 6.2.3 Molecular Absorption MNF Sensor -- 6.2.4 Humidity and
Control code
SPR701368887
Dimensions
unknown
Extent
1 online resource (ix, 228 p.)
Form of item
online
Isbn
9787308068550
Other physical details
ill.
Specific material designation
remote
Label
Subwavelength and nanometer diameter optical fibers, Limin Tong, Michael Sumetsky, (electronic book)
Publication
Note
Title from PDF title page
Bibliography note
Includes bibliographical references and index
Color
multicolored
Contents
Cover13; -- Preface -- Table of Contents13; -- 1 Introduction -- 1.1 A Brief History of Micro- and Nanofibers -- 1.2 Concepts of MNFs and the Scope of this Book -- References -- 2 Optical Waveguiding Properties of MNFs: Theory and Numerical Simulations -- 2.1 Basic Guiding Properties of Ideal MNFs -- 2.1.1 Mathematic Model -- 2.1.2 Single-mode Condition and Fundamental Modes -- 2.1.3 Fractional Power Inside the Core and Effective Diameter -- 2.1.4 Group Velocity and Waveguide Dispersion -- 2.2 Theory of MNFs with Microscopic Nonuniformities -- 2.2.1 Basic Equations -- 2.2.2 Conventional and Adiabatic Perturbation Theory -- 2.2.3 Transmission Loss Caused by a Weak and Smooth Nonuniformity -- 2.3 Theory of MNF Tapers -- 2.3.1 Semiclassical Solution of the Wave Equation in the Adiabatic Approximation and Expression of Radiation Loss -- 2.3.2 Optics of Light Propagation Along the Adiabatic MNF Tapers -- 2.3.3 Example of a Conical MNF Taper -- 2.3.4 Example of a Biconical MNF Taper -- 2.3.5 Example of an MNF Taper with Distributed Radiation Loss -- 2.4 The Thinnest MNF Optical Waveguide -- 2.5 Evanescent Coupling between Parallel MNFs: 3D-FDTD Simulation -- 2.5.1 Model for FDTD Simulation -- 2.5.2 Evanescent Coupling between two Identical Silica MNFs -- 2.5.3 Evanescent Coupling between two Silica MNFs with Different Diameters -- 2.5.4 Evanescent Coupling between a Silica MNF and a Tellurite MNF -- 2.6 Endface Output Patterns -- 2.6.1 MNFs with Flat Endfaces -- 2.6.2 MNFs with Angled Endfaces -- 2.6.3 MNFs with Spherical and Tapered Endfaces -- 2.7 MNF Interferometers and Resonators -- 2.7.1 MNF Mach-Zehnder and Sagnac Interferometers -- 2.7.2 MNF Loop Resonators -- 2.7.3 MNF Coil Resonators -- References -- 3 Fabrication of MNFs -- 3.1 Taper Drawing Techniques -- 3.2 Taper-drawing Fabrication of Glass MNFs -- 3.2.1 Taper Grawing MNFs Rom Glass Fibers -- 3.2.2 Drawing MNFs Directly from Bulk Glasses -- 3.3 Drawing Polymer MNFs from Solutions -- References -- 4 Properties of MNFs: Experimental Investigations -- 4.1 Micro/Nanomanipulation and Mechanical Properties of MNFs -- 4.1.1 Visibility of MNFs -- 4.1.2 MNF Manipulation -- 4.1.3 Tensile Strengths of MNFs -- 4.2 Optical Properties -- 4.2.1 Optical Losses -- 4.2.2 Effect of the Substrate -- References -- 5 MNF-based Photonic Components and Devices -- 5.1 Linear Waveguides and Waveguide Bends -- 5.1.1 Linear Waveguides -- 5.1.2 Waveguide Bends -- 5.2 Micro-couplers, Mach-Zehnder and Sagnac Interferometers -- 5.2.1 Micro-couplers -- 5.2.2 Mach-Zehnder Interferometers -- 5.2.3 Sagnac Interferometers -- 5.3 MNF Loop and Coil Resonators -- 5.3.1 MNF Loop Resonator (MLR) Fabricated by Macro-Manipulation -- 5.3.2 Knot MLR Fabricated by Micro-Manipulation -- 5.3.3 Experimental Demonstration of MCR -- 5.4 MNF Filters -- 5.4.1 Short-Pass Filters -- 5.4.2 Add-Drop Filters -- 5.5 MNF Lasers -- 5.5.1 Modeling MNF Ring Lasers -- 5.5.2 Numerical Simulation of Er3+ and Yb3+ Doped MNF Ring Lasers -- 5.5.3 Er3+ and Yb3+ Codoped MNF Ring Lasers -- 5.5.4 Evanescent-Wave-Coupled MNF Dye Lasers -- References -- 6 Micro/nanofiber Optical Sensors -- 6.1 Introduction -- 6.2 Application of a Straight MNF for Sensing -- 6.2.1 Microfluidic Refractive Index MNF Sensor -- 6.2.2 Hydrogen MNF Sensor -- 6.2.3 Molecular Absorption MNF Sensor -- 6.2.4 Humidity and
Control code
SPR701368887
Dimensions
unknown
Extent
1 online resource (ix, 228 p.)
Form of item
online
Isbn
9787308068550
Other physical details
ill.
Specific material designation
remote

Library Locations